■連続数のピタゴラス三角形(その39)

 √2に収束する1次分数列を考える.

  p/q→P/Q=(p+2q)/(p+q)

このとき,pをp+2q,qをp+qで置き換えています.

  P^2−2Q^2=(p+2q)^2−2(p+q)^2

=−p^2+2q^2=±1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 もう一度,pをp+2q,qをp+qで置き換えれば,

  p/q→(p+2q)/(p+q)→(p+2q+2p+2q)/(p+2q+p+q)=(3p+4q)/(2p+3q)

  P^2−2Q^2=(3p+4q)^2−2(2p+3q)^2

=p^2−2q^2=±1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 さらに,もう一度,pをp+2q,qをp+qで置き換えれば,

  p/q→(p+2q)/(p+q)→(p+2q+2p+2q)/(p+2q+p+q)=(3p+4q)/(2p+3q)→

(3p+6q+4p+4q)/(2p+4q+3p+3q)

=(7p+10q)/(5p+7q)

  P^2−2Q^2=(7p+10q)^2−2(5p+7q)^2

=−p^2+2q^2=±1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 さらに,もう一度,pをp+2q,qをp+qで置き換えれば,

(7p+10q)/(5p+7q)

=(7p+14q+10p+10q)/(5p+10q+7p+7q)

=(17p+24q)/(12p+17q)

  P^2−2Q^2=(17p+24q)^2−2(12p+17q)^2

=p^2−2q^2=±1

===================================