■マルコフ方程式の話(その16)

 逆に,

 (x+√(x^2−1))(y+√(y^2−1))=(z+√(z^2−1))

を解いて,等号が成立するための条件を求めた方が簡単と思われたが,どうだろうか?

===================================

(x+√(x^2−1))(y+√(y^2−1))=(z+√(z^2−1))

xy+y√(x^2−1)+x√(y^2−1)+√(x^2−1)√(y^2−1))=z+√(z^2−1)

−z+y√(x^2−1)+x√(y^2−1)=−xy+√(z^2−1)−√(x^2−1)√(y^2−1))

z^2+y^2(x^2−1)+x^2(y^2−1)−2yz√(x^2−1)−2xz(y^2−1)+2xy√(x^2−1)√(y^2−1))

=x^2y^2+z^2−1+(x^2−1)(y^2−1)−2xy√(z^2−1)+2xy√(x^2−1)√(y^2−1))−2√(z^2−1)√(x^2−1)√(y^2−1))

yz√(x^2−1)+xz√(y^2−1)

=xy√(z^2−1)+√(z^2−1)√(x^2−1)√(y^2−1))

z^2(y^2(x^2−1)+x^2(y^2−1)+2xy√(x^2−1)√(y^2−1)

=(z^2−1)(x^2y^2+(x^2−1)(y^2−1)+2xy√(x^2−1)√(y^2−1))

z^2y^2(x^2−1)+z^2x^2(y^2−1)

=x^2y^2z^2+z^2(x^2−1)(y^2−1)

−x^2y^2−(x^2−1)(y^2−1)−2xy√(x^2−1)√(y^2−1))

2x^2y^2z^2−z^2y^2−z^2x^2

=x^2y^2z^2+z^2x^2y^2−x^2z^2−y^2z^2+z^2

−x^2y^2−(x^2y^2−x^2−y^2+1)−2xy√(x^2−1)√(y^2−1))

0=z^2−x^2y^2−(x^2−1)(y^2−1)−2xy√(x^2−1)√(y^2−1))

z^2−x^2y^2−(x^2−1)(y^2−1)=2xy√(x^2−1)√(y^2−1))

z^2=(xy+√(x^2−1)√(y^2−1))^2

z=xy+√(x^2−1)√(y^2−1)

x^2y^2−2xyz+z^2=(x^2−1)(y^2−1)

−2xyz+z^2=−x^2−y^2+1

x^2+y^2+z^2=2xyz+1

===================================

x=3X/2,y=3Y/2,z=3Z/2とおくと

9/4{X^2+Y^2+Z^2}=27XYZ/4+1

{X^2+Y^2+Z^2}=3XYZ+4/9

 ザギエはf(t)=arccosh(3t/2)を用いて,

  x^2+y^2+z^2=3xyz+4/9

が,f(x)+f(y)=f(z)と書けることを示したが,これと一致する結果が得られた.逆向きの計算の方が簡単であったことになる.

===================================