■サマーヴィルの等面四面体(その407)

 (その395)の続き.

  P1(0,0,0)

  P2(1/√2,√3/√2,0)

  P3(2/√2,0,0)

は△2

  P1P2=P2P3=√2

  P1P3=√2

を満たす.

  P0(0,0,0)

  P1(0,0,3h)

  P2(m/√2,m√3/√2,h)

  P3(2m/√2,0,2h)

とおくと

  P0P1^2=9h^2

  P0P2^2=2m^2+h^2

  P0P3^2=2m^2+4h^2

  P1P2^2=2m^2+4h^2

  P1P3^2=2m^2+h^2

  P2P3^2=2m^2+h^2

2m^2+h^2(3)<2m^2+4h^2(2)

4h^2(1)

ここで,

  9h^2=2m^2+h^2,m^2=4h^2

ならば△3

  P0P1^2=9h^2

  P0P2^2=9h^2

  P0P3^2=12h^2

  P1P2^2=12h^2

  P1P3^2=9h^2

  P2P3^2=9h^2

△3は

  P0P1=P1P2=P2P3=√3

  P0P2=P1P3=2

  P0P3=√3

9h^2=3,h^2=1/3,m^2=4/3

===================================