■葉序らせん(その104)
凹らせんはひとつの四面体の(最短辺と対辺を除いた)連続する3辺を通る.回転軸をずらして,b=.443818の計算について再考.
A(0,0,b)
B(0,0,−b)
C(0,h,0)
D(x,y,0)
y軸の回りに回転させると
A(−bs,0,bc)
B(bs,0,bc)
C(0,h,0)
D(xc,y,xs)
投影図上,AC=BCが成り立つ.=??も成り立つことは条件にならない.
AO^2=BO^2=Y^2+b^2s^2
CO^2=(Y−h)^2
DO^2=(Y−y)^2+x^2c^2
次に中心Oを求めなければならない.軸をずらしたことにより,s^2,c^2,Yは求められるようになった.
OA=OB=OC=ODより,
Y^2+b^2s^2=(Y−h)^2=(Y−y)^2+x^2c^2
Y^2+b^2s^2=Y^2−2yY+y^2+x^2c^2=Y^2−2hY+h^2
2yY=y^2+x^2c^2−b^2s^2
2hY=h^2−b^2s^2
h(y^2+x^2c^2−b^2s^2)=y(h^2−b^2s^2)
h(y^2+x^2−x^2s^2−b^2s^2)=y(h^2−b^2s^2)
(−hx^2−hb^2+yb^2)s^2=yh^2−h(x^2+y^2)
h^2+b^2=1
x^2+y^2=h^2
b^2=−2hy+h^2
y=(h^2−b^2)/2h=(2h^2−1)/2h
y^2=(2h^2−1)^2/4h^2
x^2=h^2−y^2
−b^2=x^2+y^2−1
を代入すると
y−h=−1/2h
(−hx^2+(y−h)b^2)s^2=yh^2−h(x^2+y^2)=h^2(y−h)
(−hx^2−b^2/2h)s^2=−h/2
s^2=−1/2(−x^2−b^2/2h^2)
y/h−1=−1/2h^2より
s^2=−1/2{(y/h−1)b^2−x^2}
Y=(h^2−b^2s^2)/2h
これより,s^2,c^2,Yは求められる.
===================================
A(−bs,−Y,bc)
B(bs,−Y,bc)
C(0,h−Y,0)
D(cx,y−Y,sx)
O(0,0,0)として,
cos(∠AOC)=cos(∠BOC)=cos(2π/(1+φ))
となるbを求ればよい.
===================================