■分割関数のm角数等式(その2)

 『k(k+1)/2という形の整数を三角数,k^2という形の整数を四角数,k(3k−1)/2という形の整数を五角数といいます.一般に,k((m−2)k−m+4)/2という形の整数をm角数という』がm角数の慣用の定義であるが,これらの数の類似性から負の値での同じ形の数,たとえば,

  (3n^2−n)/2 → (3n^2+n)/2 → (3n^2±n)/2

もまた五角数と呼ばれる.

===================================

【1】オイラーの分割数

 「分割数」とは与えられた整数にどれだけ多くの分割があるのか(4=1+1+1+1,4=3+1)という整数の分割理論のことです.整数の分割では,3=2+1と3=1+2のように足し算の順序が違うものは同じと見なすことにします.

 たとえば,4を分割するには非増加数列で構成した5通りの方法,4=3+1=2+2=2+1+1=1+1+1+1がありますから,p(4)=5.同様にして,5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1よりp(5)=7となります.(分割を図形的に表す方法にヤング図形がある.ヤング図形は非増加な非負整数列を表現する印象的な方法である.)

 ここで,正の整数nに対して,

  n=k1+2k2+3k3   (k1≧0,k2≧0,k3≧0)

となる解(k1,k2,k3)の個数をanとします.n=5の場合,

  1+1+1+1+1 → (5,0,0)

  1+1+1+2  → (3,1,0)

  1+1+3   → (2,0,1)

  1+2+2   → (1,2,0)

  2+3    → (0,1,1)

ですから,a5=5となります.

  a0=1,a1=1,a2=2,a3=3,a4=4,a5=5,・・・

 このとき,母関数は

  f(x)=Σanx^n=Σx^(k1+2k2+3k3)=Σx^k1Σx^2k2Σx^3k3

 =1/(1−x)・1/(1−x^2)・1/(1−x^3)

となります.

  (1−x)(1−x^2)(1−x^3)Σanx^n=1

ですから,各項の係数を比較すると漸化式

  an=an-1+an-2−an-4−an-5+an-6

を得ることができます.

  a6=7,a7=8,a8=10,a9=12,a10=14,a11=16,・・・

 この問題を一般化して

  n=k1+2k2+3k3+・・・   (k1≧0,k2≧0,k3≧0,・・・)の個数p(n)を考えます.n=5の場合,a5に

  1+4,5

が加わり,p(5)=7となります.

 このことから,分割数は以下の公式によって代数的に定義することができることがわかります.

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =(1+x+x^2+・・・)(1+x^2+x^4+・・・)(1+x^3+x^6+・・・)(1+x^4+x^8+・・・)・・・

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

すなわち,f(x)は分割関数p(n)の母関数で,p(n)はx^nの係数になっています.

 x^k1を第1因子(1+x+x^2+・・・)の一般項,x^2k2を第2因子(1+x^2+x^4+・・・)の一般項,x^3k3を第3因子(1+x^3+x^6+・・・)の一般項,・・・とすると,

  n=k1+2k2+3k3+・・・

となって,x^nの項が整数nの分割に対応することになるのですが,オイラーはこのようにしてp(n)の母関数

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

を得たというわけです.

 オイラーの5角数定理を用いると,分割関数に対する再帰関係式

  Σp(n-j(3j±1)/2)(-1)^j=0

  p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+p(n-12)+・・・

が得られます.これより

  p(0)=1,p(1)=1,p(2)=2,p(3)=3,p(4)=5,p(5)=7,p(6)=11,

  p(7)=15,p(8)=22,p(9)=30,p(10)=41,p(11)=56,p(12)=77,・・・

を効率的に計算することができます.

 ラマヌジャンはp(n)が満たす合同式について

  p(5n+4)=0  mod5

  p(7n+5)=0  mod7

  p(11n+6)=0  mod11

  p(599)=0  mod5^3

  p(721)=0  mod11^2

を予想し,それらを証明しています.

(証)φ(q)=Π(1-q^k)とおく.

  Σp(5n+4)q^n=5{φ(q^5)}^5/{φ(q)}^6

の右辺の展開を考えると合同式が証明される.

===================================

【2】制限付き分割数

  オイラー数は非制限分割数ですが,任意の正の整数に対して,ある一定の条件を満たす分割と別の分割が同数存在するという主張を分割恒等式といいます.1948年,オイラーは異なる数への分割と奇数への分割が同数あるという注目すべき結果を証明しています.

(証)

  q(n):nの奇数のみを用いた分割の総数

  r(n):nの互いに異なる数を用いた分割の総数

とすると

  Σq(n)x^n=1/(1-x)(1-x^3)(1-x^5)・・・

  Σr(n)x^n=(1+x)(1+x^2)(1+x^3)・・・

であり,

  (1+x)(1+x^2)(1+x^3)・・・

  =(1-x^2)/(1-x)・(1-x^4)/(1-x^2)・(1-x^6)/(1-x^3)・・・

  =1/(1-x)(1-x^3)(1-x^5)・・・

と書き換えることができますから,両者の母関数は一致します.

 例えば5を異なる数に分割するのは5,4+1,3+2の3通り,奇数に分割するのは5,3+1+1,1+1+1+1+1の3通りというわけです.オイラーの分割恒等式が最初のものですが,分割恒等式はいくらでも存在し,ここに掲げたもの以外にも多くの予期せぬ分割恒等式が存在するのです.

[1]ロジャーズ・ラマヌジャンの第1恒等式

  「1の位が1,4,6,9の数への分割と各因子の差が2以上ある分割とは同数ある.」

 1の位が1,4,6,9の数とはmod5で±1と合同になる整数のことです.分割の構成数の差が2以上という制限を設けた分割と構成数が5n+1または5n+4の分割は恒に等しいというののが第1恒等式で,例えば5を1,4,6,9に分割するのは4+1,1+1+1+1+1の2通り,各因子の差が2以上ある分割は5,4+1の2通り.

(証)ヤコビの3重積公式を使えば

  Σs(n)x^n=Σq^(k^2)/(1-q)(1-q^2)・・・(1-q^k)=1/(1-q^5m-1)(1-q^5m-4)

すなわち

  1+q/(1-q)+q^4/(1-q)(1-q^2)++q^9/(1-q)(1-q^2)(1-q^3)+・・・

  =1/(1-q)(1-q^4)(1-q^6)(1-q^9)(1-q^11)(1-q^14)(1-q^19)・・・

である.

 この分割恒等式は無名の数学者ロジャーズ(1894),また彼とは独立にラマヌジャン(1913)によって得られました.ロジャース・ラマヌジャン恒等式は,最初ロジャースにより発見されたのですが,誰の興味も惹かず忘れ去られていたところ,ラマヌジャンにより別証明が与えられたというわけです.

[2]ロジャーズ・ラマヌジャンの第2恒等式

  「1の位が2,3,7,8の数への分割と因子は2以上で各因子の差が2以上ある分割とは同数ある.」

 これはmod5で±2と合同になる整数のことです.例えば5を2,3,7,8に分割するのは3+2の1通り,因子は2以上で各因子の差が2以上ある分割は5の1通り.

(証)ヤコビの3重積公式を使えば

  Σt(n)x^n=Σq^(k(k+1))/(1-q)(1-q^2)・・・(1-q^k)=1/(1-q^5m-2)(1-q^5m-3)

[3]シューアの分割恒等式

  「mod6で±1と合同になる整数への分割と,各因子の差が3以上あり,連続する3の倍数を含まないような分割とは同数ある.」

 例えば5をmod6で±1と合同になる整数に分割するのは5の1通り,各因子の差が3以上あり,連続する3の倍数を含まないような分割は5の1通り.

(証)

  Σu(n)x^n=Π1/(1-x^6k-1)(1-x^6k-5)

  Σv(n)x^n=Π(1+x^3k-1)(1+x^3k-2)

  Σw(n)x^n=Π(1+x^k+x^2k)

の母関数は一致する.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 これらの分割恒等式は狭い範囲の興味の対象にすぎないと思われるかもしれませんが,もし,物理状態がn個の基本粒子の分割に関係しているとすると,驚くほど深い物理学への応用をもっていることが理解されます.

 実際,整数の分割問題は,現在では,統計力学(Maxwell-Boltzmann統計,Bose-Einstein統計,Fermi-Dirac統計)など様々な分野で実際的な問題を解決するのに用いられています.

===================================

【3】ヤコビの3重積公式

  (a;q)n=(1-a)(1-aq)・・・(1-aq^(n-1))=Π(1-aq^k)

なる記号を導入すると

  (q;q)n=(1-q)(1-q^2)・・・(1-q^n)=Π(1-q^k)

になるが,ヤコビの3重積公式

  Σz^nq^(n(n+1)/2)=Π(1-q^n)(1+zq^n)(1+z^(-1)q^(n-1))

  (x;q)∞(q/x;q)∞(q;q)∞=Σ(-1)^m・q^(m(m-1)/2)・x^m x=-z

と表現される.ヤコビの3重積公式はテータ関数そのものを表している.

[1]ヤコビの3重積公式において,qをすべてq^3に置き換え,x=qとすれば,左辺はΠ(1-q^3n)(1-q^3n-1)(1-q^3n-2)=Π(1-q^n)=(q;q)∞となり,

  Π(1-q^n)=Σ(-1)^m・q^(m(3m+1)/2)   (オイラーの5角数定理)

と表される.

 オイラーは

(1)nが五角数でない限り,正の整数nを偶数個の異なる正の整数の和で表す方法の総数と奇数個の異なる正の整数の和で表す方法の総数が等しいこと,

(2)nが五角数ならば,正の整数nを偶数個の異なる正の整数の和で表す方法の総数−奇数個の異なる正の整数の和で表す方法の総数=(−1)^k,n=k(3k+1)/2

を示したことになる.

[2]また,qをすべてq^2に置き換え,x=qとすれば,左辺は

  Π(1-q^2n)(1-q^2n-1)^2

ここで,異なる数への分割と奇数への分割が同数あるという結果に対応する

  Π(1-q^2n-1)=Π1/(1+q^n)

より,

  Π(1-q^n)/(1+q^n)=Σ(-1)^m・q^(m^2)  (ガウスの4角数定理)

[3]今度はx=−qとすれば,(-1;q)∞=2Π(1+q^n)より,左辺は

  2Π(1-q^2n)(1+q^n-1)=2Π(1-q^2n)/(1-q^2n-1)

右辺はΣ(-∞~∞)q^(m(m+1)/2)であるが,m(m+1)/2はm=-1/2について対称であるから和を取る範囲をm:-∞~∞からm:0~∞に狭めることができて

  Σ(-∞~∞)q^(m(m+1)/2)=2Σ(0~∞)q^(m(m+1)/2)

これより

  Π(1-q^2n)/(1-q^2n-1)=Σq^(m(m+1)/2)  m:0~∞   (ガウスの3角数定理)

[4]x=δとすれば,

  (x;q)∞(q/x;q)∞(q;q)∞=(1-δ)(δq;q)∞(q/δ;q)∞(q;q)∞

  Σ(-1)^m・q^(m(m-1)/2)・x^m=Σ(1~∞)(-1)^m・q^(m(m-1)/2)・(δ^m-δ^-m+1)=Σ(0~∞)(-1)^m+1・q^(m(m+1)/2)・δ^-m(δ^2m+1-1)

両辺を(1-δ)で割り,δ→1とすれば,

  左辺→Π(1-q^n)^3

  右辺→Σ(0~∞)(-1)^m-1・(2m+1)q^(m(m+1)/2)

より,

  Π(1-q^n)^3=Σ(-1)^m(2m+1)q^((m^2+m)/2)   (ヤコビの3角数定理)

[5]三角数等式

 ヤコビの三重積公式

  Σz^nq^(n(n+1)/2)=Π(1-q^n)(1+zq^n)(1+z^(-1)q^(n-1))

において,z=1とすれば,

  Σq^(n(n+1)/2)=Π(1-q^2n)(1+q^(n-1))

が得られる.ここで,右辺が第0項から始まるようにパラメータをずらすと,

  Π(1+q^n)(1-q^2n+2)=Σq^(m(m+1)/2)  m:-∞~∞

[6]七角数等式

 qをすべてq^5に置き換え,z=−1/qとすれば,

  Σ(-1)^mq^(m(5m+3)/2)=Π(1-q^5n)(1-q^5n-1)(1-q^5n-4)

が得られる.ここで,右辺が第0項から始まるようにパラメータをずらすと,

  Π(1-q^5n+1)(1-q^5n+4)(1-q^5n+5)=Σ(-1)^mq^(m(5m+3)/2)  m:-∞~∞

[7]m角数等式

 qをすべてq^m-2に置き換え,z=−1/qとすれば,

  Σ(-1)^nq^(n((m-2)n+m-4)/2)=Π(1-q^(m-2)n)(1-q^(m-2)n-1)(1-q^(m-2)n+1)

が得られる.ここで,右辺が第0項から始まるようにパラメータをずらすと,

  Π(1-q^(m-2)(n+1))(1-q^(m-2)(n+1)-1)(1-q^(m-2)(n+1)+1)=Σ(-1)^nq^(n((m-2)n+m-4)/2)  m:-∞~∞

===================================

【4】ラマヌジャンの関数

 ラマヌジャンは,

  Δ(z)=η(z)^24=qΠ(1-q^n)^24=Στ(n)q^n

zは虚部が正の複素数で,q=exp(2πiz)

      η(z)はデデキントのイータ関数,η(z)=q^(1/24)Π(1-q^n)

を考え,そのフーリエ係数τ(n)を計算しました.

  τ(1)=1,τ(2)=-24,τ(3)=252,τ(4)=-1472,τ(5)=4830,τ(6)=-6048,

  τ(7)=-16744,τ(8)=84480,τ(9)=-113643,τ(10)=-115920,

  τ(11)=534612,τ(12)=-370944,・・・

 無限積をベキ級数に展開した式(フーリエ展開)が登場しましたが,このΔ(z)は,重さ12の保型形式

  Δ(az+b/cz+d)=(cz+d)^12Δ(z)

と呼ばれるものになっていて,オイラーの五角数公式の拡張(24乗版)と考えられます.

 ラマヌジャン数は,オイラーの分割数のアナローグであり,

(1)mとnが素ならば,τ(m)τ(n)=τ(mn)

  τ(2)*τ(3)=-6048=τ(6),τ(2)*τ(5)=-115920=τ(10)

  τ(3)*τ(4)=-370944=τ(12),τ(2)*τ(9)=2727432=τ(18)

  τ(4)*τ(5)=-7109760=τ(20),τ(3)*τ(7)=-4219488=τ(21)

(2)τ(p^(n+1))-τ(p^n)τ(p)=-p^11τ(p^(n-1))   (漸化式)

(3)τ(n)=σ11(nの約数の11乗の総和)  (mod 691)

(4)τ(n)=n^2σ7  (mod 27)

(5)τ(n)=nσ3  (mod 7)

など,驚くような性質をもっています.

 1916年,ラマヌジャンはラマヌジャン数のゼータについて考え,ある予想をたてました.ラマヌジャン数のゼータ,すなわち,

  L(s)=Στ(n)n^(-s)

とおくと(オイラー積のアナローグ)

  L(s)=Π{1-τ(p)p^(-s)+p^(11-2s)}^(-1)

が成り立つことを予想したのです.

 歴史上最初のゼータであるオイラー積

  ζ(s)=Σn^(-s)=Π(1−p^(-s))^(-1)

は積の中身がp^(-s)の1次式であり,本質的には1次のゼータでしたが,L関数では,p^(-1)の1次式から2次式に進化しているのです.ラマヌジャン数のゼータは,歴史上最初の2次のゼータといえるのですが,新種のゼータに関するこの予想は,翌年,モーデルによって証明されました(1917年).

 また,τ(p)はpが増加するとき,急激に増加するのですが,1974年,ドリーニュによって,ラマヌジャン予想,

  |τ(p)|<2p^(11/2)

が証明されています.この式はp^(-s)=xとおいた2次式

  1-τ(p)x+p^11x^2

の虚根条件(判別式:τ(p)^2-4p^11<0)となっていることに注意して下さい.

 このようにして,

  τ(p)=2p^(11/2)cosθp   (0≦θp≦π)

なるθpがただひとつとれます.そこで,任意に固定された0≦a≦b≦πに対して,偏角θpが[a,b]となる素数密度は

  2/π∫(a,b)sin^2θdθ

で与えられるだろうという佐藤幹夫予想がたてられています.すなわち,θp=π/2のあたりに多く分布していることを予想しているというわけです.この予想は2009年,テイラーにより証明されました.

===================================