■等面単体の体積(その166)

 鋭角の等面単体が球面に内接することは自明であるが,球面三角法を用いて単位球に内接する条件を求めておきたい.

===================================

 cosC=(cosc−cosa・cosb)/sina・sinb

 ここで,弧長を弦長に変換しておく.

  a→2arcsin(a/2)

と置けばよい.

  cos{2arcsin(a/2)}=1−2(a/2)^2=1−a^2/2

  sin{2arcsin(a/2)}=a{1−(a/2)^2}^1/2

 cosC=(cosc−cosa・cosb)/sina・sinb

={(1−c^2/2)−(1−a^2/2)(1−b^2/2)}/ab{1−(a/2)^2}^1/2{1−(b/2)^2}^1/2

 sin^2C=1−{(1−c^2/2)−(1−a^2/2)(1−b^2/2)}^2/a^2b^2{1−(a/2)^2}{1−(b/2)^2}

=1−(1−c^2/2)^2/△+2(1−c^2/2)(1−a^2/2)(1−b^2/2)/△−(1−a^2/2)^2(1−b^2/2)^2/△

  △=a^2b^2{1−(a/2)^2}{1−(b/2)^2}

  ▲=a^2b^2c^2{1−(a/2)^2}{1−(b/2)^2}{1−(c/2)^2}

 sin^2C

=1−(1−c^2/2)^2/△+2(1−c^2/2)(1−a^2/2)(1−b^2/2)/△−(1−a^2/2)^2(1−b^2/2)^2/△

=1−(1−c^2/2)^2c^2{1−(c/2)^2}/▲+2(1−c^2/2)(1−a^2/2)(1−b^2/2)c^2{1−(c/2)^2}/▲−(1−a^2/2)^2(1−b^2/2)^2c^2{1−(c/2)^2}/▲

===================================

  S=A+B+C−π,S=4π/4=π

であるから,

  A+B+C=2π,A+B=2π−C

  cos(A+B)=cosC

  退屈で長い計算が続きそうなので,次回の宿題としたい.

===================================