■パドヴァン数列とプラスチック比(その7)

 今回のコラムでは,漸化式

  an=an-2+an-3

で表される数列(パドヴァン数列)を取り上げます.

===================================

【1】フィボナッチ数列と黄金比

  1,1,2,3,5,8,・・・

初項1,第2項1から始まり,隣り合う2項の和が次の項となるこの数列をフィボナッチ数列とよびます.その一般項Fn は

  Fn=Fn-1+Fn-2

です.フィボナッチ数列の特性方程式

  x^2−x−1=0

の2つの解より,連続する2項の比は黄金比

  φ=(1+√5)/2=1.618034・・・

に次第に近づくことになります.

 黄金長方形から正方形を取り除くと一回り小さな黄金長方形が現れてきます.このことを繰り返し行えば対数らせんが現れますが,この曲線は自然界ではオーム貝などの形にみられ,自己相似的な成長過程を表す理想的な曲線とされています.サイクロイドの伸開線はそれと合同なサイクロイドですが,対数らせんの伸開線もそれと合同な対数らせんになります.

 今度は逆に1辺の長さがフィボナッチ数列の正方形をらせん状に加えていきます.最初の2つの正方形は1辺の長さが1で,そこに1辺の長さが2の正方形,引き続いて1辺の長さが3,5,8,13,21,・・・.すると,優美な対数らせんが現れてきますが,このらせんはほぼ黄金比

  φ=(1+√5)/2=1.618034・・・

で外に広がることになります.

 初項2,第2項1のフィボナッチ数列

  2,1,3,4,7,11,18,・・・

は彼にちなんでリュカ数列と呼ばれています(1877年).

  Ln=Ln-1+Ln-2

 リュカはフィボナッチ数列,リュカ数列を用いてメルセンヌ数(2^n−1)が素数であるかどうかを判定し,(2^127−1)が素数であることを示しています(1876年).この数は12番目のメルセンヌ素数で,1952年の13番目(2^521−1)からはコンピュータによる発見ですから,コンピュータを使わずに見つけられた最大のメルセンヌ素数になっていて,わかっている最大の素数として最長不倒記録を保ち続けました.

===================================

【2】パドヴァン数列とプラスチック比

 フィボナッチ数列では正方形をらせん状に並べましたが,ここでは正三角形をらせん状に並べてみましょう.最初の3つの正三角形は1辺の長さを1,次の2つは1辺の長さが2で,そのあとは3,4,5,7,9,12,16,21,・・・.このようにしてもおおよそ対数らせんを描きます.

 数列

  1,1,1,2,2,3,4,5,7,9,12,16,21,・・・

は直前の1項を除いたその前の2項を加えたものです.漸化式は

  Pn=Pn-2+Pn-3   (P0=P1=P2=1)

で表されます.この各項が2つ前と3つ前の項の和で与えられる数列は,イタリアの建築家パドヴァンにちなんでパドヴァン数列と呼ばれています.

 パドヴァン数列の特性方程式

  x^3−x−1=0

の唯一の実数解より,パドヴァン数列の連続する2項の比はプラスチック比

  p=1/3{3√(27/2−3√69/2)+3√(1/2+√69/18)}=1.324718・・・

に次第に近づくことになります.pがφよりも小さいことより,パドヴァン数列はフィボナッチ数列に較べてゆっくりと増加することになります.

  p^5−p^3−p^2=0

  p^4−p^2−p^1=0

より

  p^5−p^4−p^3−p^1=p^5−p^4−1

ですから,3次方程式p^3−p−1=0の解はこの5次方程式も満たすことがわかります.あるいは,因数分解

  p^5−p^4−1=(p^3−p−1)(p^2−p+1)

でもよいのですが,このことから

  Pn=Pn-1+Pn-5

の関係が成り立つこともわかります.

===================================