■整数にものすごく近い値(その5)

 -d=43,67,163

はとても面白い性質をもっています.

  x=exp(π√d)

が数値的にとても整数に近くなりうるというものです.

===================================

  exp(π√43)=884736743.999777・・・

  exp(π√67)=147197952743.99999866・・・

  exp(π√163)=262537412640768743.99999999999925007・・・

 これは決して偶然の一致ではありません.xに対しては

  x-744+196884/x-21493760/x^2+・・・

がぴったり整数になることがわかっています.これらの係数は重さ0のモジュラー関数においてq→-1/xとしたものです.

 xが大きいほど後半の項は小さな値となるので,x自身は極めて整数(実は立方数)に近い数になるというわけです.

  exp(π√43)=960^3+744-ε

  exp(π√67)=5280^3+744-ε

  exp(π√163)=640320^3+744-ε

 exp(π√163)は,1965年のエイプリル・フールのジョークとして,マーチン・ガードナーは整数だと主張しました.

  exp(π√163)=640320^3+744

 しかしながら,ゲルフォント・シュナイダーの定理より,exp(π√163)は超越数であって,整数にはならないことが証明されます.もしこれが整数になったら一大事ですが,整数との差はわずか1兆分の1未満であって,見事としかいいようがありません.

===================================

 この問題は一見するとまったく異なる問題,

  x^2-x+41

はx=1,2,・・・,40に対して,すべて整数価をとる,という問題に関係しています.

===================================