■畳の敷き方数・再考(その1)

 1×2の長方形(ドミノ)で長方形を作る問題は和室の畳の敷き方と同じ問題であって,私たち日本人にはなじみ深いものです.

[Q]n畳間に畳を敷き詰める方法は何通りあるか(n×2mの長方形の部屋にn×m枚の畳を敷く場合の敷き方は何通りあるか)

===================================

[A]m=1の場合はやさしい.n枚の畳を鰻の寝床のように細長いn×2の間取りに敷くその敷き方の数Fnになる.半畳の正方形の1辺を単位として数えると,敷き方の数はnを1と2に分割する組み合わせ数(n段の階段を一歩で1段または2段昇ることにする昇り方の数)に一致し,それは

  Fn=Fn-1+Fn-2

の関係になるから,フィボナッチ数列(初項1,第2項2)

  1,2,3,5,8,13,・・・

  Fn=1/√5[{(1+√5)/2}^n+1−{(1−√5)/2}^n+1]

が現れることになる.

===================================

 細矢治夫先生によると,この問題は物理学の問題と深く関係しているという.物理学研究者の2つのグループが1961年に独立に発表した結果では,

  K(n×2m)=2^2m[(n+1)/2]Π(k=1~m)Π(l=1~[(n+1)/2]{cos^2(lπ/(n+1))+cos^2(kπ/(2m+1))}

 とくにm=1のときは

  K(n×2)=Π(l=1~[(n+1)/2]{1+4cos^2(lπ/(n+1))}

という式が出てくるが,これはフィボナッチ数列の三角関数表現になっているとのことである.

 フィボナッチ数列は指数関数的に増加するから,K(n×2m)は爆発的に増加する.

m/n 1 2 3 4 5

1 1 2 3 5 8

2 1 5 11 36 95

3 1 13 41 281 1183

4 1 34 153 2245 14824

5 1 89 571 18061 185928

 m=2の段を見れば

  6畳間に畳を敷き詰める方法は11通り

  8畳間に畳を敷き詰める方法は36通り

  10畳間に畳を敷き詰める方法は95通り

あることがわかる.ただし,ここでは回転や鏡映で重なるものを別々のパターンとして数えている.

===================================