■オイラーの多面体定理から(その4)

 3次元立体では必ず頂点に結合する辺の個数が3の頂点か3角形の面をもつことを示します.n本の辺をもつfn枚の面とn本の辺が交わるvn個の頂点をもつ凸多面体について,

 i)Σnfn=Σnvn

 ii)Σf2n+1は偶数

 iii)v3+f3>0

を順に示していきます.

(証)各辺は2個の頂点をもつから,Σnvn=2E.また,各辺では2枚の面が交わるからΣnfn=2E.

(証)i)より,Σ(2n+1)f2n+1=(偶数),したがって,Σf2n+1も偶数.

(証)E=Σen,V=Σvn,F=Σfn,Σnfn=Σnvn=2E.    もしv3=0,f3=0ならば,2E=4v4+5v5+・・・≧4V.同様に,2E≧4F.これより,V−E+F≦E/2+E/2−E=0.これはオイラーの多面体定理:V−E+F=2に矛盾するから,v3,f3のうち,少なくとも1つは0でない.

===================================