■ウィア・フェラン泡(その62)

  [1]=cot(π/n)

  [2]=cosec(π/n)

として,ねじれ重角錐の座標を

  (H+h/2,0,0)

  (h/2,1,[1])

  (h/2,−1,[1])

  (−h/2,0,[2])

にとる.

===================================

【1】ねじて重角錐におけるS^3/V^2比の最小化

[1]底面が辺の長さ2の正n角形である反角柱(底面積ncot(π/n),高さh)を考える.

 その上に載る角錐の高さHは

  H:(H+h)=cot(π/n):cosec(π/n)

  Hcosec(π/n)=(H+h)・cot(π/n)

  H(cosec(π/n)−cot(π/n))=hcot(π/n)

 角錐の体積と側面積は

  V1=2/3・ncot(π/n)・H

  S1=2n・{H^2+cot^2(π/n)}^1/2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[2]反角柱の断面は2n角形で,0≦t≦1として,辺の長さは2t,2(1−t)で与えられる.中心軸からの距離は,それぞれ

  t・cot(π/n)+(1−t)cosec(π/n)

  (1−t)・cot(π/n)+t・cosec(π/n)

であるから,2n角形の面積は

  t^2cot(π/n)+t(1−t)cosec(π/n)

 +(1−t)^2cot(π/n)+t(1−t)cosec(π/n)

のn倍である.

  (1−2t+2t^2)→(t−t^2+2/3・t^3|(0,1)=2/3

  (2t−2t^2)→(t^2−2/3t^3)=1/3

より 反角柱の体積と側面積は

  V2={2/3・cot(π/n))+1/3・cosec(π/n)}nh

  S2=2n・{h^2+(cosec(π/n)−cot(π/n))^2}^1/2

===================================

  [1]=cot(π/n)

  [2]=cosec(π/n)

  [3]=cosec(π/n)−cot(π/n)と略す.

  H=h[1]/[3]

  V1=2/3・n[1]・h[1]/[3]

  S1=2n・{h^2[1]^2/[3]^2+[1]^2}^1/2

  V2={2/3・[1]+1/3・[2]}nh

  S2=2n・{h^2+[3]^2}^1/2

V=V1+V2

=2/3・nh[1]^2/[3]+{2/3・[1]+1/3・[2]}nh

V’=2/3・n[1]^2/[3]+{2/3・[1]+1/3・[2]}n

S=S1+S2

=2n・{h^2[1]^2/[3]^2+[1]^2}^1/2+2n・{h^2+[3]^2}^1/2

S’=2n・h[1]^2/[3]^2{h^2[1]^2/[3]^2+[1]^2}^-1/2+2nh{h^2+[3]^2}^-1/2

  3S’V−2SV’=0

より,S^3/V^2が最小値をとるhを求めると

  3S’V=3S’・{2/3・nh[1]^2/[3]+{2/3・[1]+1/3・[2]}nh}

  2SV’=2S・{2/3・n[1]^2/[3]+{2/3・[1]+1/3・[2]}n}

  3S’h=2S

3h{2n・h[1]^2/[3]^2{h^2[1]^2/[3]^2+[1]^2}^-1/2+2nh{h^2+[3]^2}^-1/2}=2{2n・{h^2[1]^2/[3]^2+[1]^2}^1/2+2n・{h^2+[3]^2}^1/2}

3h^2{[1]^2/[3]^2{h^2[1]^2/[3]^2+[1]^2}^-1/2+{h^2+[3]^2}^-1/2}=2{{h^2[1]^2/[3]^2+[1]^2}^1/2+{h^2+[3]^2}^1/2}

{h^2[1]^2/[3]^2+[1]^2}^1/2{h^2+[3]^2}^1/2をかけると

3h^2{[1]^2/[3]^2{h^2+[3]^2}^1/2+{h^2[1]^2/[3]^2+[1]^2}^1/2}

=2{h^2[1]^2/[3]^2+[1]^2}{h^2+[3]^2}^1/2+{h^2+[3]^2}{h^2[1]^2/[3]^2+[1]^2}^1/2}

より,hを求める.

 なお,外接球もつための条件は

  (h/2)^2+cosec^2(π/n)=(H+h/2)^2

である.

===================================