■パラメータ解? (その47)

【1】実2次体の基本単数

 Q(√m)を2次体とするとき,a+b√mの共役をa−b√mで表します(m<0ならば通常の複素共役である).このとき,その標準底は

  ω=√m         m=2,3(mod4)

  ω=(1+√m)/2   m=1(mod4)

で与えられます.

 そして,単位元「1」の約数を単数といいます.m>0のとき,単数群は

  {±1}×C(Cは乗法的巡回群)

によって与えられます.また,εをε>1なる最小の単数とするとき,

  C={±ε^n}

と表すことができ,εをQ(√m)の基本単数といいます.

 このようなεのとり方は4通りあるのですが,その中でε>1なるものは1通りですから,実2次体の基本単数は一意に定まります.Q(√m)を実2次体とすると,

[a]m=2,3(mod4)のとき

 基本単数を

  ε=a+b√m

とすると

  ε~=a−b√m

εが単数←→εε~=a^2−mb^2=±1

また,

  ε^n=an+bn√m

と書くと

  ε^(n+1)=ε・ε^n=(a+b√m)(an+bn√m)

      =aan+bbnm+(abn+ban)√m

 これより

  an+1=aan+bbnm

  bn+1=abn+ban

 このことから0<a1<a2<・・・,0<b1<b2<・・・となるのですが,より,a,bはペル方程式:

  a^2−mb^2=±1

の解の中で(a,b)が最小なものとして与えられます.ペル方程式の自明な解(a=±1,b=0)には単数±1が,自明でない解のなかで絶対値|a|または|b|が最小なものには基本単数が対応するというわけです.

 Q(√2),Q(√3),Q(√6),Q(√7)の基本単数を求めると,それぞれ,

  x^2−2y^2=±1,複号は−1で(1,1)が最小→ε=1+√2

  x^2−3y^2=±1,複号は+1で(2,1)が最小→ε=2+√3

  x^2−6y^2=±1,複号は+1で(5,2)が最小→ε=5+2√6

  x^2−7y^2=±1,複号は+1で(8,3)が最小→ε=8+3√7

[b]m=1(mod4)のとき

 基本単数を

  ε=(a+b√m)/2   a=b(mod2)

と書けば

  a^2−mb^2=±4

となること以外は前と同様です.

 Q(√5),Q(√13)の基本単数を求めると,それぞれ,

  x^2−5y^2=±4,複号は−4で(1,1)が最小→ε=(1+√5)/2

  x^2−13y^2=±4,複号は−4で(3,1)が最小→ε=(3+√13)/2

 なお,実2次体の基本単数は一意に決まるのに対して,虚2次体では

  a^2+mb^2=±1 → (a,b)=(±1,0)

ですから,単数基準自身が消えてしまいます.

===================================