■素数と無限級数(その3)

 ゼータ関数は,オイラーの積表示

  ζ(s)=Π(1−p^(-s))^(-1)

を通して素数分布=#{n|素数p≦x}の問題に関係してきます.オイラーはオイラー積表示の関係式を用いて,素数が無限個あること,しかも自然数の中で相当な割合で現れるという事実を証明をしたのですが,これはギリシャ数学の単なる別証ではなく,その後の数学の発展に繋がるものだったのです.

 そして,有名な素数定理(PT)は,漸近分布の形で

  π(x)〜x/logx

と表すことができます.素数は無限個存在し,そして等差数列{a+kn}にも素数は無限に含まれるのですが,素数pでa+knの形のものの分布問題がディリクレの算術級数定理です.

  π(x;a,n)〜C・x/logx   C=1/φ(n)

 算術級数定理は素数定理を精密化したもので,初項aの取り方にはよらないのですが,ここで,オイラーの関数φ(n)は1からn−1までの整数のうち,nと互いに素になるものの個数

  φ(n)=#(Z/nZ)

として定義されます.たとえば,n=7の場合,1,2,3,4,5,6なのでφ(7)=6,n=10の場合1,3,7,9がそうなのでφ(10)=4となります.

 1760年頃,オイラーは,数nが素因数p,q,r,・・・をもつときに,それらの重複度にかかわらず,

  φ(n)=n(1−1/p)(1−1/q)(1−1/r)・・・

であることを示しました.この原理は「エラトステネスのふるい」によっているのですが,たとえば,10=2・5,44=2^2・11,100=2^2・5^2より,

  φ(10)=10(1−1/2)(1−1/5)=4

  φ(44)=44(1−1/2)(1−1/11)=20

  φ(100)=100(1−1/2)(1−1/5)=40

また,任意の素数pに対して,

  φ(p^n)=p^n(1−1/p)

したがって,

  φ(p)=p(1−1/p)=p−1

となります.

 なお,算術級数定理の証明にはディリクレのL関数

  L(s,χ)=Π(1−χ(p)p^(-s))^(-1)

    χは乗法群(Z/nZ)の1次元表現

が用いられます.

===================================