■ウォルステンホルムの定理とジューカ予想

【1】ウォルステンホルムの定理

 ウォルステンホルムの定理(1862年)

 「pが2,3以外の素数ならば有限調和級数(既約分数)

  1+1/2+1/3+・・・+1/(p−1)

の分子はp^2で割り切れる.」

 たとえば,p=5のとき,この分数は25/12となり,その分子はp^2で割り切れる.この問題は素数pによる整除性ではなく,素数の平方p^2による整除性なのでかなり難しい問題である.

===================================

 「p>3が素数ならば

  S=((p−1)!)^2(1+1/2^2+1/3^2+・・・+1/(p−1)^2)

はpで割り切れる.」

 「pが素数でp>5であるときに限り,

  1+1/2^3+1/3^3+・・・+1/(p−1)^3

の分子はp^2で割り切れる」

 「pが素数でp>7であるときに限り,

  1+1/2^4+1/3^4+・・・+1/(p−1)^4

の分子はpで割り切れる」

 1819年,バベッジは

  (2p−1,p−1)=1   (mod p^2)

に気づきましたが,1862年,ウォルステンホルムは

  (2p−1,p−1)=1   (mod p^3)

を証明したことになります.

 一般に,pを素数,kをp−1で割り切れない正の整数とするとき,

  1+1/2^k+1/3^k+・・・+1/(p−1)^k

の分子はpで割り切れる

 =1+2^k+3^k+・・・+(p−1)^k

がpで割り切れることが示されています.

===================================

【2】ジューカ予想

 pが素数であれば,そのときに限って

  1^p-1+2^p-1+3^p-1+・・・+(p−1)^p-1+1

はpで割り切れる.

===================================