■素数定理とエラトステネスのふるい(その27)

 (その26)において,

  Z(√2)={±(1+√2)^n}

  Z(√3)={±(2+√3)^n}

が精密に成り立つ.

===================================

 Q(√2)ではε=1+√2が基本単数ですが,その他の解は

  (1+√2)^n=an+bn√2

とおいて

  n=1:1^2−2・1^2=−1

  n=2:3^2−2・2^2=+1

  n=3:7^2−2・5^2=−1

  n=4:17^2−2・12^2=+1

  n=5:41^2−2・29^2=−1

  n=6:99^2−2・70^2=+1

  n=7:239^2−2・169^2=−1

  n=8:577^2−2・408^2=+1

  n=9:1393^2−2・985^2=−1

  n=10:3363^2−2・2378^2=+1

一般に,

  an^2−2bn^2=(−1)^n

となります.

 Q(√3)ではε=2+√3が基本単数で,

  n=1:2^2−3・1^2=+1

  n=2:7^2−3・4^2=+1

  n=3:26^2−3・15^2=+1

  n=4:97^2−3・56^2=+1

  n=5:362^2−3・209^2=+1

  n=6:1351^2−3・780^2=+1

  n=7:5042^2−3・2911^2=+1

  n=8:18817^2−3・10864^2=+1

  n=9:70226^2−3・40545^2=+1

  n=10:262087^2−3・151316^2=+1

一般に,an^2−2bn^2=1でan^2−2bn^2=−1となる解は存在しません.

 この2つの例からわかるように,基本単数εのノルムが−1のときには

  x^2−my^2=+1

  x^2−my^2=−1

はどちらも無数の解をもちますが,εのノルムが+1のときには解はすべて前者の解であって,後者は解をもちません.

===================================