■素数定理とエラトステネスのふるい

 素数定理をエラトステネスのふるいという初等的な方法を用いて,ラフなスケッチ程度に誘導してみましょう.

===================================

 xまでのすべての整数うちで,奇数,すなわち2で割れない数は大体半分(1−1/2)あります.奇数のうちで,3で割り切れない数は2/3=1−1/3あります.さらに,残っている数のうち,5で割り切れない数は1−1/5あります.したがって,xを越えない素数の個数はこれらの積をすべての素数pにわたってとればよいことになり,近似的に

  Π(1−1/p)・x

に等しくなります.

 さらに,Π(1−1/p)は近似的に1/logxに等しくなります.ただし,これを証明するのは微積分を使っても容易ではありません.専門的で,ここで説明することはできそうにありませんから,天下り式に結果だけを示しておきます.このことを認めれば,素数定理π(x)〜x/logxが導出されたことになります.

 さらに,素数定理にはもっとうまい近似法があります.素数の密度関数はπ(x)/xですから,

  π(x)/x〜1/logx   (x→∞)

です.1/logxが1からxまでの平均的な素数の密度と考えられますが,これをxの近くの素数の密度と考え,区間[1,x]を小区間に区切って積分してみます.

  Li(x)=∫(0,x)dt/logt

Li(x)は対数積分関数と呼ばれますが,π(x)をx/logxで近似するより,対数積分を用いたLi(x)の近似はさらに適切な素数分布の近似式になっています.

===================================