■整数の積(その14)

 ミンコフスキーは数論家として出発しましたが,研究を進めるにしたがって次第に幾何学に興味を惹かれるようになり,幾何学的方法を用いて数論を研究する「数の幾何学」と呼ばれる新しい数学分野を打ち立てました.

 格子点定理が数の幾何学の基礎となっているのですが,格子点定理は次のように述べることができます.

 「平面(n次元空間)上の任意の単位格子において,1つの格子点を中心として1辺の長さが2の正方形(面積4の平行四辺形,面積2^nの中心対称な凸体)を任意の向きにおいてみると,内部あるいは境界上にもうひとつの格子点が必ず存在する.」

 今回のコラムでは,ミンコフスキーの格子点定理の一般化やこの定理の条件を変えたバリエーションのいくつかを紹介します.

===================================

【1】ガウスの円問題

 原点を中心とした半径rの円の内部(境界を含む)にある整数点の個数をR(r)で表す.

  R(10)=317       R(100)=31417

  R(20)=1257      R(200)=125627

  R(30)=2821      R(300)=282697

 R(r)は円の面積の推定値を与える.

  r   R(r)/r^2     r   R(r)/r^2

  10   3.17       100   3.1417

  20   3.1425     200   3.140725

  30   3.134      300   3.14107

 ガウスは

  |R(r)−πr^2|<cr

を示したが,

  |R(r)−πr^2|<cr^k

となるkの最小値を求める問題に一般化される.

 シェルピンスキーはk≦2/3を証明し,ガウスのk=1を大きく改善した.1963年に陳景潤はk≦24/37を,1990年にハクスリーはk≦46/73を得たが,シェルピンスキーの成果からほんのわずかしか進んでいない.

 k=1/2と予想されている.同じ問題を3次元球についても考えることができる.

===================================

【2】ミンコフスキーの格子点定理

 ここではミンコフスキーの定理を一般的な形で述べることはせず,正方格子の場合について,「正方格子のひとつの格子点を中心として1辺の長さ2の正方形を任意の向きにおいてみると,この正方形の内部または境界上にもうひとつの格子点が必ず存在する」ことをガウスの円問題と同様に定式化する.

 格子点に長さsの正方形をおくと,正方形で覆われた部分の面積はs^2R(r),また,これらの正方形はすべて半径r+2sの円の内部に落ちるから,

  s^2R(r)≦π(r+2s)^2

  s^2≦πr^2(1+2s/r)^2/R(r)

 この不等式においてsを固定しておき,r→∞とすると右辺→1.こうしてs≦1が得られる.

===================================