■ボロノイ細胞と平行多面体(その5)

 (その4)の最後で「切頂四面体による空間充填」について紹介したが,切頂を施していない正四面体は空間充填図形ではない.空間を埋めつくす正多面体は立方体のみである.

 同じ大きさの正三角形を互いに1つの頂点の周りに集める.このとき平面を覆いつくすことが可能で,6個の正三角形を集めることができる.しかし,同じ大きさの正四面体を互いに1つの頂点の周りに集めるとき,空間を覆いつくすことは不可能である.

 それでは

  (Q)1点に最大何個の正四面体を集めることができるだろうか?

今回のコラムではこの問題について考えてみる.

 [参]砂田利一「ダイヤモンドはなぜ美しい?」シュプリンガー・ジャパン

 [参]コラム「n次元最密球配置」

 [参]コラム「ケプラー問題の解決」

===================================

【1】正四面体による空間充填(解答?)

 少なくとも20個集めることは可能である.しかもこのことは直観的にイメージすることができる.正20面体を思い出してほしい.正20面体の面はすべて正三角形なので中心と頂点を結べば20個の四面体が得られることになる.

 正20面体の外接球の半径を1とすれば,この四面体の底面(正三角形)の1辺の長さは

  2((5−√5)/10)^1/2=1.0514622・・・

と計算される.稜の長さが中心と頂点の距離より大きいことから,中心を頂点とする20個の正四面体を集めることができることがわかる.

 それでは隙間を集めることによりもう1個の正四面体を入れることができるだろうか? 球面三角法により23個以上の正四面体を集めることは不可能であることが証明される.

 1辺の長さ1の正四面体の頂点を中心とする半径1の球面に投影した球面三角形の面積Sは,正四面体の二面角をθとすると

  S=3θ−π

ここで,cosθ=1/3より

  S=arccos(1/3)−π=0.5512・・・

  4π/S=22.7・・・

となって,20≦n≦22が得られる.

 n=20と予想されている.なお,n次元正単体の二面角は

  cosθ=1/n

中心と各頂点を結ぶベクトルのなす角は

  cosθ=−1/n

で与えられる(正三角形ではn=2,正四面体ではn=3).

===================================

【2】ニュートンの13球問題(球の接吻問題)

 これに似た問題で,歴史的にも有名な「ニュートンの13球問題」を紹介しましょう.1つの10円玉を机の上において,それと触れ合うようにかつお互いに重ならないようにして,6個の10円玉を置くことができます.1次元の球は区間であり,接触数は1次元のとき2個,2次元のとき6個であることは自明であって,幼稚園児でも解くことができそうです.

 10円玉の例からわかるようにτ2=6ですが,n≧3のとき,τn はどうなるでしょうか? まず,3次元の場合,単位球のまわりに面心立方格子状に単位球を置いた場合の接触点

1/√2(±1,±1,0)

1/√2(±1,0,±1)

1/√2(0,±1,±1)

を考えてみると,これら12個の相異なる2点に対応するベクトルの内積は,−1,±1/2,0のいずれかであり,したがって,その間の角度(球面距離)は60度以上となりますから,これらの点で接するように12個の単位球を置くことができます.したがって,τ3≧12は直ちにわかります.

 実際,正20面体の12個の頂点に対して,そこで接するように12個の単位球を置くことができます.この場合,頂点間の角度は約63゜26′になり,12個の球は互いに接触しておりません.少しだけなら自由に動かせるという状況ですから,その隙間を一つに集めたらもう一個球が入るのではないでしょうか? ところが,これができるかできないかはあまり自明ではありません.というより,3次元になるととたんに問題が難しくなってしまうのです.

 球面三角法により球帽の面積Sは,θ=π/6とおいて

  S=2π(1−cosθ)=2π(1−√3/2)

  Sτ3≦4π

  τ3≦4/(2−√3)=14.9282・・・

より12≦τ3≦14が示されますが,τ3=12であることは結論できません.

 3次元の球の最大接触数τ3については,1694年にニュートンとグレゴリーの間で議論され,ニュートンは12を,グレゴリーは13を主張したといわれています.結局,ニュートンは12個が最大であるという証明ができず,グレゴリーも13個並べたわけではないので,「ニュートンの13球問題」と呼ばれるこの論争は引き和けに終わりました.

 1874年,ホッペが12個が最大であることという証明を試みましたが,不備があり,ようやく完全な証明がなされたのは1953年,ファン・デル・ヴェルデンとシュッテによってです.つまり,3次元空間内で1つの球には同時に12個の球しか接することができません.1956年にリーチが新しい証明を与えていますが,いずれにせよ3次元のときは12個という解が得られるまで非常に長い年月がかかったことになります(250年以上かかって,20世紀後半になってようやく解決された!)

 4次元の場合はどうなるでしょうか? 24個の面心立方格子状配置の接触点

1/√2(±1,±1,0,0)

1/√2(±1,0,±1,0)

1/√2(±1,0,0,±1)

1/√2(0,±1,±1,0)

1/√2(0,±1,0,±1)

1/√2(0,0,±1,±1)

で重ならないように置けるので,τ4≧24は明らかです.また,τ4≦25は示されています.そしてようやく2003年,ロシアの数学者ミュージンよりτ4=24であることが証明されたのです.

 n次元ユークリッド空間において,1つの単位球に同時に接触することのできる単位球の最大個数τnの正確な値を決定する問題は大変難しく,4次元以上の高次元については,高度に対称的な格子状配置になっている8次元(240個)と24次元(196560個)の場合を除いて未解決であり,現在,正確な値が知られているのは,

  τ1=2,τ2=6,τ3=12,τ4=24,τ8=240,τ24=196560

の6つだけなのです.

===================================

 少し詳細に調べていきましょう.4次元,5次元においては面心立方格子の類似品となりますが,6次元以上についてはそのようなことはもはや成立しなくなります.次元の上昇とともに,超球の間の隙間が大きくなっていくからです.8次元になると面心立方格子に十分な隙間ができるので,112個の接触点

1/√2(0,・・・,±1,0,・・・,±1,0・・・)   (±1の個数は2つ)

と128個の隙間の点

1/√8(±1,±1,±1,±1,±1,±1,±1,±1)   (+の個数は偶数)

に同じ大きさの球が詰め込み可能になります.

 専門的になりますが,τ8の240個の点はE8型の単純リー代数の240個のルート格子で実現されます.さらに,この詰め込みの断面(部分格子)が6次元と7次元のもっとも効率のいい格子状詰め込みを与えてくれます.

 また,1965年,リーチは群論と深く結びついた今日リーチ格子として知られるようになったものに基づいて,24次元空間の格子状詰め込みを構成しました.この詰め込みにおいては,なんと1つの超球に196560個もの超球が接触しています.τ24の196560個の点はリーチ格子の原点から一番近い点の集合として得られることが知られています.

 つまり,8次元と24次元は,接吻数が計算できる特殊な次元なのであり,都合のいい格子(8次元の場合,格子にはE8,24次元の場合,リーチ格子という名前が付いている)がひとつに決まるので,格子上に球を配置することによってすぐに接吻数を数えることができるというわけです.

  [参]坂内英一・坂内悦子「球面上の代数的組合せ理論」シュプリンガー・フェアラーク東京,p214〜215

には,τ8=240,τ24=196560のゲーゲンバウアー展開を用いた証明が掲載されています(オドリズコ,スローン).

===================================

【3】ケプラーの球の詰め込み問題

 球の充填および接触数の問題は重要な未解決問題であるヒルベルトの第18問題として取り上げられているものですが,前者は大域的なものであり,後者は局所的な問題と考えられます.そして,半径の等しい球をn次元ユークリッド空間R^nに効率的に詰め込む問題のなかでも3次元空間の球の充填問題は「ケプラー問題」と呼ばれるものですが,この問題は1998年にトマス・ヘールズとファーグソンによって証明されました.

 ガウスは球を規則正しく並べるという条件つきでケプラー予想が成り立つことを証明したのですが,不規則な並べ方まで含めてあらゆる場合に成り立つことはそう簡単には証明できないことでした.多くの場合,最密充填は整然とした格子によってもたらされるのですが,次元によっては最大接触数が一見ランダムな配置によって実現する場合もあるので問題は複雑なのです.

 たとえば1〜8次元では最大接吻数は格子上で起きるのですが,9次元では格子上での最大接吻数が272であるのに対して,不規則配置では306個の球が接触できるものが知られているのですから,9次元以上になるとルート格子だけでは済まなくなるのです.

 格子状配置による評価は,最終的にはグラフ的算法に帰着されるのですが,

  n  1  2  3  4  5  6  7  8  9

 接吻数 2  6  12  24  40  72  126  240  272

 格子  A1 A2 A3 D4 D5 E6 E7 E8

1≦n≦8では,ガウス記号を用いて

  下界=n([2^(n-2)/3]+n+1)

の形にまとめられます.(この式はn>8に対しては成り立ちません.n=9のとき468となるのですが,コクセターの上界401よりも大きくなってしまうからです.)また,n=24のときリーチ格子が唯一最密な球の詰め込みを与えることが証明されています(コーン,クマール:2004年).

 ともあれ,ヘールズとファーグソンの証明により「キャノンボール・パッキングよりも密度の高い3次元パッキングは存在しない」ことになるのですが,ランダムな配置まで含めても,面心立方格子が3次元空間における最密充填構造だというケプラー予想は,400年近く経ってやっと定理に昇格したことになります.

===================================

 「ケプラー問題」は「ニュートンの13球問題」より古いものです.1611年,ケプラーは,物質を構成する粒子は体積を最小とするように自己を組織化するだろうという構成原理を考えました.そこで,粒子が球形だと仮定して,さまざまな配置の空間充填率を計算してみました.ケプラーが最初に試みたのは,それぞれの球が6個の球に囲まれるように第1層を構成し,第2層は第1層のくぼみに球を置くという積み方です.

 これは別の角度からみると,立方体の8個の頂点と6面の中心に球が配置されているところから,面心立方格子と呼ばれている配置ですが,この積み方は八百屋の店先でミカンなどの山を安定に積み上げるために使われている日常的な配置です.この場合の充填率は√2π/6(74.04%)になります.

 他の配置と比較してみましょう.たとえば,下の層を正方形配列としその真上に球をのせていく単純立方格子の充填率はたったπ/6(53%)にすぎません.また,六方格子(第1層は面心立方格子と同じ正三角形配列だが,第2層は球の真上に球をのせる)の充填率は√3π/9(60%)であり,立方体の8個の頂点と中心に球を配置した体心立方格子の充填率は√3π/8(68%)です.こうして,さまざまな配置を調べてみたケプラーは,面心立方格子が最密充填構造であるという結論に達しました.

 面心立方格子が最も密な球の充填方法だろうという予想は400年近く前のケプラーまでさかのぼります.日常の経験からしても,同じ大きさの球の最も効果的な配置問題は自明なものと考えてしまいがちで,直感的に面心立方格子をなす場合が最大に詰め込んだ配置のように思えます.しかしだからといって,無限にある可能性をすべてひっくるめて証明したわけではないので,これは定理ではなく予想にすぎません.ランダムな配置まで含めると,空間充填率が74.04%よりも引き上げられるかもしれないからです.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[補]最密充填は正方形を基礎とする配置と六角形を基礎とする配置から作れます.3個のミカンに対して1つの窪みができるのですが,その窪みにミカンを置いたものが六方最密充填です.一方,4個のミカンに対して1つの窪みができ,その窪みにミカンを置くと面心立方充填になります.正方配置の窪みは六方配置の場合よりも深いので,この2つの配置は充填密度に関してはまったく同じなのです.

 この積み方は八百屋の店先でミカンなどの山を安定に積み上げるために使われている日常的な配置ですが,別の角度からみると,上の層の置き方に

  (1)第1,2,3層目がすべてずれていて,第1層目の球の真上に第4層目の球がくる(ABCABCABC・・・)

  (2)第1層目の球の真上に第3層目の球がくる(ABABAB・・・)

という2種類があります.

 (1)は立方体の8個の頂点と6面の中心に球が配置されているところから面心立方格子と呼ばれている配置,(2)は六方最密充填ですが,いずれの場合の充填率も√2π/6(74.04%)になります.以上の2つ以外にも無数の配列が考えられ,たとえば,ABACの4層周期,ABCACBの6層周期などの積み重なりなどが見つけだされています.

===================================

 ロジャースは「ケプラー予想が正しいことは多くの数学者が信じ,すべての物理学者が知っている」という名文句でも有名ですが,1958年,彼は四面体配置から空間充填率の上限を3√2(arccos1/3−π/3)=77.96%とはじき出しました.四面体配置は,3次元で相互に接するように球を配置するときの最大数となる配置ですが,全空間を充たすことはできないので,空間充填率の上限と考えられるわけです.

 ちなみに正十二面配置では75.46%,正八面体では72.09%となるのですが,これらの正多面体も大域的な空間充填はできないのです.1988年にはこの上限はわずかに改良され,77.84%よりも高密度の詰め込みは存在しないことが証明されています(ムーダー).これを74.04%まで引き下げることができれば,面心立方格子が最密充填構造だという証明になるのですが,残念ながら,上限の引き下げは骨の折れる厄介なプロセスであり,遅々として進みませんでした.

===================================

 面心立方格子が3次元空間における最密充填構造だという証明は,わずか数%の差であるにもかかわらず,また,何世紀にもわたる研究にもかかわらず未解決でした.苦々しいほど遅々たる歩みのケプラーの問題については,ロジャーズの名文句のごとく,大半の数学者がまず間違いないだろうと考え,すべての物理学者が当たり前だと思っていた・・・そして欠けているのは証明だけという状況だったのです.

 ケプラー予想は,1994年に解決されたフェルマーの最終定理に取って代わる数学上の未解決問題になっていたわけですが,ヘールズはボロノイ分割に加えて,その双対あるドロネーの四面体分割(ドロネー・シンプレックス)を用いました.そして,評価関数を導入して,密度の低い配置は減点(ペナルティー・ポイント)され,密度の高い配置は加点(ポーナス・ポイント)する.

 このとき,何年にもわたってヘールズを悩ませることになった厄介な問題は正二十面体配置(五角反柱配置)でした.六方最密充填でも面心立方充填置でもすべての球はほかの12個の球に接触しています(どの球も同じ層の中の3つ,すぐ上とすぐ下の層の3つずつ,合計12個の球と接しています).

 しかし,12個の球に接触する配置はこればかりではなく,無限に存在します.たとえば,真ん中の球の真下に1個の球を置き,赤道の少し下に5個の球,赤道の少し上に5個の球,最後に真ん中の球の真上に12番目の球を置くというのが正二十面体配置(五角反柱配置)です.

 菱形十二面体配列は,たとえどの球も1個だけでは動けなくとも配列全体では動き得るので,五角形十二面体型(正二十面体型)配列に移行することができるのです.

 正二十面体配置(球充填密度:75.46%)が12個の球に接触する局所的な最密球充填密度であることもヘールズ,マクローリンにより証明されています.しかし,3次元空間において正二十面体(正十二面体)は全空間を満たすことのできる敷石立体ではないのです.

 ちなみに,球に外接する正十二面体の体積は

  10{2(65−29√5)}^(1/2)=5.550・・・

菱形十二面体の体積は

  4√2=5.656・・・

となり,この値は上の値より大きくなります.

[補]アルキメデスの正角柱(上下の底面が正多角形で,側面がすべて正方形であるもの)を少しひねって,側面をすべて正三角形にしたものをアルキメデスの反角柱と呼びます.正20面体は側面が10個の正三角形からなる五角反柱の上下の面に正五角錐をつけると構成することができます.

===================================

 また,ヘールズはケプラー問題の証明のためにコンピュータの助けを借りなければなりませんでした.ヘールズによるケプラー問題の証明は,本質的に最適化問題であって,シンプレックス法を繰り返し利用しました.

 ヘールズの証明は美しくエレガントな証明ではなく,しらみ潰しの方法に基づく力ずくの証明だったのですが,この状況は「四色問題」の場合と非常によく似ています.「四色問題」でコンピュータが初めて定理の証明に使われたとき数学界は大揺れに揺れたのですが,ヘールズのケプラー問題の証明はそれから20年以上経っていたこともあってか,それほどのスキャンダルにはなりませんでした.コンピュータによる証明が数学の進展にとって重要であることが多くの数学者にとって受け入れられるようになってきているためなのでしょう.

===================================

【補】最密球充填と最疎球被覆の年表

n   ルート  球充填密度

2   A2   π/2√3=0.906(ラグランジュ1773,ガウス1831)

3   A3   π/3√2=0.740(ガウス1831)

4   D4   π^2/16=0.617(Korkine,Zolotareff,1872)

5   D5   π^2/15√2=0.465(Korkine,Zolotareff,1877)

6   E6   π^3/48√3=0.373(Blichfeldt,1925)

7   E7   π^3/105=0.295(Blichfeldt,1926)

8   E8   π^4/384=0.254(Blichfeldt,1934)

24   Λ24   π^12/12!=π^12/479001600=0.001930(Cohn,Kumar,2004)

n   ルート  球被覆密度

2   A2~   2π/√27=1.209(Kershner,1939)

3   A3~   5√5π/24=1.464(Bambah,1954)

===================================