■分割数の漸近挙動(その6)

 「分割数」とは与えられた整数にどれだけ多くの分割があるのか(4=1+1+1+1,4=3+1)という整数の分割理論のことです.整数の分割では,3=2+1と3=1+2のように足し算の順序が違うものは同じと見なすことにします.

 たとえば,4を分割するには非増加数列で構成した5通りの方法,4=3+1=2+2=2+1+1=1+1+1+1がありますから,p(4)=5.同様にして,5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1よりp(5)=7となります.(分割を図形的に表す方法にヤング図形がある.ヤング図形は非増加な非負整数列を表現する印象的な方法である.)

===================================

【1】分割数の母関数

 たとえば,正の整数nに対して,

  n=k1+2k2+3k3   (k1≧0,k2≧0,k3≧0)

となる解(k1,k2,k3)の個数をanとします.n=5の場合,

  1+1+1+1+1 → (5,0,0)

  1+1+1+2  → (3,1,0)

  1+1+3   → (2,0,1)

  1+2+2   → (1,2,0)

  2+3    → (0,1,1)

ですから,a5=5となります.

  a0=1,a1=1,a2=2,a3=3,a4=4,a5=5,・・・

 このとき,母関数は

  f(x)=Σanx^n=Σx^(k1+2k2+3k3)=Σx^k1Σx^2k2Σx^3k3

 =1/(1−x)・1/(1−x^2)・1/(1−x^3)

となります.

  (1−x)(1−x^2)(1−x^3)Σanx^n=1

ですから,各項の係数を比較すると漸化式

  an=an-1+an-2−an-4−an-5+an-6

を得ることができます.

  a6=7,a7=8,a8=10,a9=12,a10=14,a11=16,・・・

 この問題を一般化して

  n=k1+2k2+3k3+・・・   (k1≧0,k2≧0,k3≧0,・・・)の個数p(n)を考えます.n=5の場合,a5に

  1+4,5

が加わり,p(5)=7となります.

 このことから,分割数は以下の公式によって代数的に定義することができることがわかります.

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =(1+x+x^2+・・・)(1+x^2+x^4+・・・)(1+x^3+x^6+・・・)(1+x^4+x^8+・・・)・・・

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

すなわち,f(x)は分割関数p(n)の母関数で,p(n)はx^nの係数になっています.

 x^k1を第1因子(1+x+x^2+・・・)の一般項,x^2k2を第2因子(1+x^2+x^4+・・・)の一般項,x^3k3を第3因子(1+x^3+x^6+・・・)の一般項,・・・とすると,

  n=k1+2k2+3k3+・・・

となって,x^nの項が整数nの分割に対応することになるのですが,オイラーはこのようにしてp(n)の母関数

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

を得たというわけです.

===================================

【2】分割数の近似式

 p(n)を評価する問題は数論において研究されていて,ラマヌジャンが予想した注目すべき漸近近似式

  p(n) 〜 1/4n√(3)exp(π√(2n/3))

は,1918年,ハーディーとラマヌジャンによって,円周法を用いて証明が与えられています.

 実は,円周法に基づく漸近公式の結果を正確に証明するだけでも,長くてこみ入った理論が必要になります.そこで漸近公式の概要だけを簡単に述べますが,σ(k)をkの約数の和とすると,p(n)に対する漸化式

  p(n)=1/nΣσ(k)p(n-k)

において,σ(k)の漸近的振る舞い

  1/n^2Σσ(k)〜π^2/12

を用いると,nが大きい場合の分割数の漸近挙動

  p(n)〜exp(π√(2n/3))/4n√3

を得ることができます.このことから,p(n)は準指数関数と考えることができます(p(n)^(1/n)→1).

===================================