■レムニスケート積分(その10)

 2等分点はp(u)=1+√2  (作図可能)

 3等分点はp(u)=1+√3+√(3+2√3)  (作図可能)

さらに,

 p(5u)=1

を解いて,

  p(u)=w,z=1/√w

とすると,

  w=(2+√5+√(5+2√5))+√(−1+(2+√5+√(5+2√5))^2)=14.5588  (作図可能)

 (その9)では結果のみ示したが,計算方法も示しておきたい.

===================================

【1】レムニスケート積分からワイエルシュトラスの標準形へ

 しかし,5等分点ともなると,Mathematicaで展開しても言葉が一切入らない数式が数ページにもおよび,どうしても5等分点は得られなかった.レムニスケート周長の5等分問題を扱うには,レムニスケートサインによる定式化ではうまくいきそうになく,ワイエルシュトラスの標準形

  ∫(∞,0)du/(4u^2-g2u-g3)^(1/2)

の特別な場合として扱うことにした.ワイエルシュトラスのペー関数pの加法公式は,レムニズケートサインの場合とは異なり,有理関数となるから,計算上のアドバンテージが得られるからだ.

  ∫(0,x)1/(1-x^4)^(1/2)dx

は変数変換

  x=1/√z,dz=−z^(-3/2)/2dz

により

  ∫(x,∞)1/(4z^3-4z)^(1/2)dz

となる.これは慣用の記号でg2=4,g3=0のワイエルシュトラスの標準形である.

 ワイエルシュトラスのペー関数p(u)を単にpと略記すると

[1]微分方程式は

  (p’)^2=4p^3−4p

  p”=6p^2−2

  p^(3)=12pp’

  p^(4)=120p^3−72p

[2]加法定理

  p(u+v)=−p(u)−p(v)+1/4{(p’(u}−p’(v})/(p(u}−p(v})}^2

は,v→uの極限で倍角公式

  p(2u)=−2p(u)+1/4{p”(u}/p’(u}}^2

 =−2p+1/4・(6p^2−2)^2/(4p^3−4p)

 =(p^4+2p^2+1)/(4p^3−4p)

を得る.

 以下,v→2u,3u,4uとすると3倍角,4倍角,5倍角公式が得られる.ここで,レムニスケートの4半弧を定規とコンパスで2等分できることを示すために

  p(2u)=(p^4+2p^2+1)/(4p^3−4p)

において,p(u)=p,p(2u)=1とおく.すると,

  (p^4+2p^2+1)=(4p^3−4p)

より,p=1+√2=z

  x=1/√z=(-1+√2)^1/2=0.643594(→作図可能)

 こうして,ファニャーノはレムニスケートの四半弧を同じ長さの2つの弧へ分解することができることを示した.もう一度この手続きを繰り返すと4半角公式,2等分を3回繰り返すと8半角公式,・・・.これによって1/2^n倍に対する値が導かれる.

  p(2u)=(p^4+2p^2+1)/(4p^3−4p)=1+√2

を解く.解析解はとても長くなるが,作図可能であることを示すことができる(近似解のみを示すと,p=9.33034).引き続き

  p(2u)=(p^4+2p^2+1)/(4p^3−4p)=9.33034

を解いて,p=37.2407.

 2等分点はp(u)=1+√2  (作図可能)

 3等分点はp(u)=1+√3+√(3+2√3)  (作図可能)

さらに,

 p(5u)=1

を解いて,

  p(u)=w,z=1/√w

とすると,

  w=(2+√5+√(5+2√5))+√(−1+(2+√5+√(5+2√5))^2)=14.5588  (作図可能)

===================================

【2】∫1/(1-x^6)^(1/2)dxの場合

 ついでに

  ∫1/(1-x^6)^(1/2)dx

について考えてみたい.変数変換

  x=1/√z,dz=−z^(-3/2)/2dz

により

  ∫(x,∞)1/(4z^3-4)^(1/2)dz

となる.これは慣用の記号でg2=0,g3=4のワイエルシュトラスの標準形である.

 ワイエルシュトラスのペー関数p(u)を単にpと略記すると

[1]微分方程式は

  (p’)^2=4p^3−4

  p”=6p^2

  p^(3)=12pp’

  p^(4)=120p^3−48

[2]加法定理

  p(u+v)=−p(u)−p(v)+1/4{(p’(u}−p’(v})/(p(u}−p(v})}^2

は,v→uの極限で倍角公式

  p(2u)=−2p(u)+1/4{p”(u}/p’(u}}^2

 =−2p+1/4・(6p^2)^2/(4p^3−4)

 =(p^4+8p)/(4p^3−4)

を得る.

  p(2u)=(p^4+8p)/(4p^3−4)=1

より,p=1+√3=z

  x=1/√z=((-1+√3)/2)^1/2

  p(2u)=(p^4+8p)/(4p^3−4)=1

より,p=1+√3=z(→作図可能).

 次に

  p(2u)=(p^4+8p)/(4p^3−4)=1+√3

を解く.解析解はとても長くなる.近似解のみを示すと

  p=10.8517

 引き続き

  p(2u)=(p^4+8p)/(4p^3−4)=10,8517

を解いて,p=43.4021.

 すなわち,この曲線は定木とコンパスで弧長が2等分,4等分,8等分できることがわかったが,3等分点は

  p(u)=2+2・2^1/3+^2/3

で作図不可能であることも示される.

===================================

【3】∫1/(1-x^3)^(1/2)dxの場合・・・第1種楕円積分の標準形への還元

 積分

  I=∫(c,1)dx/(1−x^3)^1/2

を考える.変換

  y=(λx+μ)/(νx+ρ),x=(−ρy+μ)/(νy−λ)

を適当に選ぶことにより,常に

  dy/(1+my^2+ny^4)^1/2

の形に還元できる.

  λ=−1,μ=1−√3,ν=1,ρ=−1+√3

 x=cに対するyの値を

  y1=(c−1+√3)/(−c+1+√3)

とおくと

  I=1/4√3∫(y1,1)2dy/((1−y^2)(2−√3+(2+√3)y^2)^1/2

 ここで,y^2=1−z^2,z1^2=1−y1^2とおくと第1種楕円

  I=1/4√3∫(0,z1)dz/((1−z^2)(1−k^2z^2)^1/2=1/4√3F(k,φ1)

となる.ただし,

  k=(√2+√6)/4,k^2=(2+√3)/4

  φ1=arccos((c−1+√3)/(−c+1+√3))=arcsin((1−y1^2)^1/2)

  sinφ1=z1,z1=(1−y1^2)^1/2

  c=1→z1=0

  c=0→z1=(4√3−6)^1/2=α

 ところで,第1種楕円積分の標準形

F(k,x)=∫(0,x)1/{(1-x^2)(1-k^2x^2)}^(1/2)f(x)dx

については加法公式が使える.これで,この曲線の弧長を求める問題は,加法公式

  z={x(1+my^2+ny^4)^1/2+y(1+mx^2+nx^4)^1/2}/(1−nx^2y^2)

  m=−(1+k^2),n=k^2,α=(4√3−6)^1/2

の問題に還元されたことになる.

 倍角公式

  x’=2xy/(1−nx^4)=2x(1+mx^2+nx^4)^1/2/(1−nx^4)

より,2等分点に対応する楕円曲線上の点

  2x(1+mx^2+nx^4)^1/2/(1−nx^4)=α

の解をx=βとすると,

  1−((c−1+√3)/(−c+1+√3))^2=β^2

  c=√3+1−2√3/((1−β^2)^1/2+1)

がこの曲線の2等分点である.

  2x(1+mx^2+nx^4)^1/2/(1−nx^4)=α

を求めたところ,解析解

  x=−1+√3

が得られた.

 したがって,2等分点は

  c=√3+1−(2√3+3)(1−√(2√3−3)=0,671618(→作図可能).4等分点,8等分点も同様に計算することができる.

===================================