■素数がもたらしたもの(その9)

 ここでは,

  Σk^2logk

について考えてみる.

  f(x)=x^2logx f^(5)(x)=6/x^3

  f’(x)=2xlogx+x  f^(6)(x)=−24/x^4

  f”(x)=2logx+3 f^(7)(x)=120/x^5

  f^(3)(x)=2/x  f^(8)(x)=−720/x^6

  f^(4)(x)=−2/x^2 f^(9)(x)=5040/x^7

より,

  f^(k)(x)=(-1)^k-1(k−2)!/x^k-2

  f^(2k-1)(x)=(2k−3)!/x^2k-3

===================================

  Σ(1,n)k^2logk〜∫(1,n)x^2logxdx+(f(n)+f(1))/2+ΣB2k/(2k)!(f^(2k-1)(n)-f^(2k-1)(1))+R

  ∫(1,n)x^2logxdx=[x^3/3・logx]-∫(1,n)x^2/3dx=n^3/3・logn-n^3/9+1/9

  (f(n)+f(1))/2=n^2logn/2

  (f'(n)-f'(1))/12=1/12・(2nlogn+n-1)

  (f^(3)(n)-f^(3)(1))/720=(2/n-2)/720

  (f^(5)(n)-f^(5)(1))/30240=(6/n^3-6)/30240

  (f^(7)(n)-f^(7)(1))/1209600=(120/n^5-120)/1209600

  B2k/(2k)!(f^(2k-1)(n)-f^(2k-1)(1))=B2k/(2k)!(2k−3)!(1/x^2k-3−1)→-B2k/(2k)(2k-1)(2k-2)

  Σk^2logk〜(n^3/3+n^2/2+n/6)・logn-n^2/9+n/12+C

  C=1/9-1/6+1/360-1/5040+1/10080-・・・

定数Cは

  C=−ζ’(−2)

で与えられる.

  Σk^2logk〜(n^3/3+n^2/2+n/6)・logn-n^3/9+n/12-ΣB2k/(2k)(2k-1)(2k-2)

  K=2~

===================================