■実数のハウスドルフ次元

 [0,1]を3等分して中央の区間を取り除くという操作を繰り返す.方眼紙を1枚もってきてこの図形にかぶせ,この図形を覆っているマス目の個数を数える.つぎにマス目の大きさを半分にした方眼紙で同じことを繰り返す.もとの図形が線であればマス目の数は2=2^1倍に,面であればマス目の数は4=2^2倍に増える.

 マス目の大きさを1/3にした方眼紙で同じことを繰り返すと画素数は2倍になるから,

  3^d=2→d=log2/log3=0.6309・・・

===================================

【1】実数のm進展開の分布とハウスドルフ次元

 実数のm進展開は0〜m−1の数字で表されますが,各数字(0〜m−1)の出現確率をp0,p1,・・・,pm-1

  Σpk=1,すなわち,p0+p1+・・・+pm-1=1

とします.

 0と1の間の数のうち,ほとんどの実数はm進展開したとき,各桁に現れる数字の出現確率が均等であることが知られています(正規数).

 また,F(p0,p1,・・・,pm-1)を[0,1)上の実数で,各桁に現れる数字(0〜m−1)の出現確率がp0,p1,・・・,pm-1であるような実数の集合とすると,Fのハウスドルフ次元dimFは

  dimF=−Σpklogpk/logm

で定義されます.正規数の集合F(1/m,・・・,1/m)のルベーグ測度1であり,したがって,その次元も1となります.

 また,0・log0=0と約束しておくことにして,[0,1]を3等分して中央の区間を取り除くという操作を繰り返します.このようにして得られる3分割カントル集合は最も有名なフラクタル集合の1例です.3分割カントル集合は3進展開の各桁に1の現れない数の集合F(1/2,0,1/2)ですが,そのハウスドルフ次元は

  log2/log3=0.6309・・・

となります.

===================================

【2】連分数展開

 連分数展開が有限で終わることと有理数であることは同値です.そこで,2次方程式の解となる√nの連分数展開を求めると,たとえば

  √2=[1:2,2,2,2,・・・]

  √3=[1:1,2,1,2,1,2,1,2,・・・]

  √7=[2:1,1,1,4,1,1,1,4,・・・]

のように循環型の単純連分数に展開されることが知られています.一般に,2次の無理数(整数係数の2次方程式の解)は周期的な連分数展開をもちます(ラグランジュの定理).

 平方根を無限連分数に表す手順はわりやすく,たとえば,1<√2<2であるから

  √2=1+(√2−1)

    =1+1/(√2+1)    2<√2+1<3

    =1+1/{2+(√2−1)}

    =1+1/{2+1/(√2+1)}

    =1+1/{2+1/(2+(√2−1)}

    =1+1/{2+1/(2+1/(√2+1)}

    =1+1/{2+1/{2+1/{2+1/{2+・・・

の手順を何度も繰り返すことにより,

  √2=[1:2,2,2,2,・・・]

ができあがります.また,黄金比φ=(1+√5)/2は,

  φ=[1:1,1,1,,1,・・・]

で表されます.

 ここでは,m進展開の代わりに連分数展開を用いて数の集合を定義してみますが,たとえば,正の実数が無限連分数展開され,そのすべての部分商が1または2であるような実数の集合のハウスドルフ次元は0.531280506・・・であることが計算されています.

 しかし,3次以上の方程式の解,たとえば3√2の連分数展開を求めると,

  3√2=[1:3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,・・・]

の一般項は求めることができません.この展開に現れる整数に最大値があることも示すこともできないのです.

 なお,ヒンチンは,一般の連分数

  [a0:a1,a2,a3,・・・,an,・・・]

の大多数についてあてはまる法則を発見しています.ヒンチンの定理とは,幾何平均(a1a2・・・an)^1/nの値がn→∞のとき,ある無限乗積から定まる定数

  (a1a2・・・an)^1/n→Π(1+1/k(k+2))^logk/log2=2.685452001・・・

に収束するというものです.ただし,分母に明確なパターンのある代数的数やeをはじめとするいくつかの超越数は例外になります.

===================================

【3】ディオファントス近似と位数

 連分数とディオファントス近似の理論は密接に関連しています.ディリクレの定理によれば「任意の実数xについて

  |x−p/q|<1/q^2

を満たす有理数p/qが存在する.」

 この条件を書き直せば

  ‖qx‖<q^(-1)

となる正の整数qが無限に多く存在するというわけです.

 実数xが無限に多くのqに対して

  ‖qx‖<q^(1-α)

となるとき,位数αまで近似可能といいます.そして,α>2となる実数は存在し,そのような実数全体のハウスドルフ次元は2/αであることが証明されています(Jarnikの定理).

===================================