■焦線と特異点

 楕円ではF1P+F2P=一定であり片方の焦点から出た光線は楕円上で反射して第2の焦点に向かうとか,双曲線ではF1P−F2P=一定で片方の焦点から出た光線が表面にあたって反射するとあたかも第2の焦点から出たように反射するとか,放物線の焦点を出た光は曲線上で反射して曲線の対称軸に平行に進むという幾何光学的特徴はすでにご存知であろうと思います.

 凸レンズでも凹面鏡でもよいのですが,太陽光線を焦点に集めて紙を燃やした経験は誰にもあるものでしょう.ところが,レンズも凹面鏡も放物面ではないので,光は正確に1点に集まるわけではありません.理想的な場合,焦点では光が1点に集まりますが,焦線(コースティック,caustic)とは点ではなくて線をなす場合をいいます.

 直線の集まりのことを数学的には包絡線というのですが,光学分野では焦線あるいは火線という名で呼びます.焦線の例としては,陽のよく当たる窓辺にコーヒーカップをもっていって,カップの底を覗いてみて欲しいのですが,そこには,コーヒカップの中に太陽光が当たってできるハートマーク状のカスプ(A2型のクライン特異点,2次元の単純特異点)をもつ6次曲線:

  (x^2+y^2)^3−12(x^2+y^2)^2+48x^2−60y^2−64=0

が見えるはずです.この6次曲線は腎臓型曲線(ネフロイド)と呼ばれます.

 回転円(半径r)が固定円(半径R)に接して滑ることなく転がっていくとき,回転円の周上の点の軌跡を考えます.回転円が固定円に外接するとき,その軌跡をエピサイクロイド,内接するとき,ハイポサイクロイドと呼びます.R/r比が無理数ならば,回転円上の1点aが固定円上の1点bと接した後,円が永久に転がり続けたとしても,両者は再び接することはありませんが,有理数ならば有限回の回転の後再び接します.

 整数ならば,ちょうど1回転後に再び接することになりますが,R=nr(nは自然数)の場合,エピサイクロイドは

  x=(n+1)rcosθ−rcos(n+1)θ

  y=(n+1)rsinθ−rsin(n+1)θ

で与えられます.たとえば,固定円と回転円の半径が等しい場合(n=1),エピサイクロイドは心臓型曲線(カージオイド)を描きます.

 腎臓型曲線(ネフロイド)は平行光線が円の内側で反射されるときの包絡線で,n=2の場合にあたります.したがって,半径Rの凹面鏡の球心を中心とする半径R/2の円上を滑ることなく転がる半径R/4の円の接点の軌跡であり,ネフロイドの特異点は凹面鏡の球心と鏡面のちょうど中間,凹面鏡の球心からR/2の位置にできることになります.

===================================

【1】エピサイクロイド・ハイポサイクロイドの特異点(直線族の包絡線)

 エピサイクロイド(カージオイド,ネフロイドなど),ハイポサイクロイド(デルトイド,アステロイドなど)には,直線族の包絡線(エンベロプ)であるという共通の性質が知られています.

 たとえば,ネフロイドは平行光線が円の内側で反射されるときの包絡線でしたが,カージオイドは光が周上の1点から発して円周で反射されたときにできる包絡線であることがわかっています.カージオイドは4次曲線

  (x^2+y^2)^2−6(x^2+y^2)+8x−3=0

で表されます.n=1ですから,半径Rの凹面鏡の球心を中心とする半径R/3の円上を滑ることなく転がる半径R/3の円の接点の軌跡であり,カージオイドの特異点は凹面鏡の球心からR/3の位置にできることになります.

 円の反射による包絡線は一般にはリマソン(蝸牛線)になるのですが,光源の位置が無限遠にある場合はネフロイド,円周上にある場合はカージオイド,円の中心にある場合には円の中心そのものになるというわけです.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 また,アステロイドは長さ4rの棒の両端をx軸,y軸にのせながら動かしたときの包絡線となっています.「アステロイド:x^(2/3)+y^(2/3)=a^(2/3)において曲線状の任意の点における接線がx軸,y軸と交わる点をそれぞれA,BとすればAB=aであることを証明せよ.」は高校の教科書にも取り上げられていて,ご存知の方も多いでしょうが,その逆問題「曲線上の任意の点における接線のx軸,y軸とで切り取られる部分の長さが一定であるような曲線を求めよ.(クレローの微分方程式)」を取り上げたものは少ないようです.この微分方程式は簡単に解けて,アステロイドという解曲線が得られます.

 デルトイドは3つの尖点をもつ図形ですが,「デルトイドの接線が曲線に挟まれる部分の長さは一定である.」という性質があります.これは,デルトイドでは長さ4rの棒をデルトイドに接しながら1回転することができるというのと同一です.→(掛谷の問題)

 シムソン線というのは三角形の外接円上の任意の1点から3辺(またはその延長線)に下ろした垂線の足を結ぶ直線のことで,垂線の足は一直線上に並ぶところが面白いところです.初めてデルトイド(三星形)の研究を行ったのはオイラー(1745年)ですが,19世紀の数学者シュタイナーがシムソン線の包絡線として研究したところから,デルトイドはシュタイナーのハイポサイクロイドとも呼ばれています.

 デルトイドがもつ性質のひとつは外接円さえ同じであれば,三角形の形に関係なく,同じ形のデルトイドが得られるということです.もう一つの性質はデルトイドで両端を仕切ったシムソン線の長さは一定で,その値は転円の半径をr(すなわち定円の半径を3r)とすると,4rになります.

 三角形の9点円Qと同心で,半径がその3倍の定円Q’を導線として,Qを通るシムソン線(3本ある)がQ’と交わる点Sにおいて,最初Q’に接していた9点円と同大の円をQ’の内側をころがすとき,最初Sにあった点の描く軌跡がこのデルトイドです.この結果はシュタイナーが初等幾何学的に示しました.

 なお,n個の尖点をもつハイポサイクロイドの定円の半径をRとした場合,ハイポサイクロイドの面積は

  S=(n−1)(n−2)/n^2・πR^2

で表されます.

===================================

【2】垂足曲線の特異点(円族の包絡線)

 曲線の各点における接線に対して,定点から下ろした垂線の足の軌跡を垂足曲線といいます.

 パスカルのリマソン(蝸牛線)は定点Oから定円への接線へ下ろした垂線の足の軌跡は極座標では

  r=a+bcosθ

と表されます.ここでいうパスカルはブレーズ・パシカルの父,エチエンヌ・パスカルを指します.

 蝸牛線のx,yに関する方程式は

  (x^2+y^2−ax)^2=b^2(x^2+y^2)

となる4次曲線ですが,a=bの場合はエピサイクロイド(固定した円の円周上を外側から円が滑らずに転がるとき,転円上の固定点の軌跡)の1つである心臓型曲線(カーディオイド)と一致します.

  r=a+acosθ

 すなわち,円:x^2+y^2=a^2の接線へ円周上の点(a,0)から下ろした垂線の足の軌跡はカージオイドとなり,円周上にない点を定点とした場合は,蝸牛線になるのです.

 また,直角双曲線の中心に関する垂足曲線はベルヌーイのレムニスケート(連珠形)になります.レムニスケートは,直角双曲線上に中心をもち,双曲線の中心を通る円の包絡線と考えることもできます.

 垂足曲線の特異点はそれぞれの曲線の変曲点(曲率=0)に対応していることが示されています.そのほかに,垂足曲線には,円族の包絡線であるという共通の性質が知られています.

 レムニスケートが直角双曲線上に中心をもち,双曲線の中心を通る円の包絡線になっていることはすでに述べましたが,カージオイドは円周上に定点Pをとり,円周上の任意の点Qを中心に半径PQの円を次々にとって描いていくと,それらの円の包絡線として得られます.したがって,カージオイドには,円の包絡線として,周転円の円周上の点の軌跡として,垂足曲線としての3つの作り方があることになります.また,定点を円周上にない点にとったとき,円群の包絡線がリマソンです.

===================================

【3】法線と焦線(平行曲線の特異点はその曲線の縮閉線上に現れる)

 曲線の曲がり具合を記述する微分幾何学では,曲線の曲率中心の軌跡を縮閉線(エボリュート)といい,縮閉線に対してもとの曲線を伸開線(インボリュート)といいます.このように書いてもピンと来ないでしょうから,表現法を変えますが,曲線Lのまわりに巻かれた糸があり,この糸をぴんと張ったままほどくと糸の自由端によって曲線Mが描かれるとします.MをLの伸開線(インボリュート),LをMの縮閉線(エボリュート)と呼びます.

 縮閉線の接線は伸開線の法線ですから,これら2曲線の間で測った長さは伸開線の曲率半径になります.また,縮閉線は与えられた曲線の曲率中心においてその法線と接するので,縮閉線は与えられた曲線の法線からなる直線族の包絡線を求めることにより得られることがわかります.

 ここで試しに,楕円と円の各点から法線を引いてみてください.円の場合は中心点に法線が集中してしまいます(焦点)が,楕円の場合は4つのカスプをもつ曲線が浮かび上がってきます.楕円:

  x^2/a^2+y^2/b^2=1

の縮閉線は,4つのカスプをもつ曲線(準アステロイド)

  (ax)^(2/3)+(by)^(2/3)=(a^2−b^2)^(2/3)

で,楕円の平行曲線の特異点はその曲線の縮閉線である準アステロイド上に現れるのです.

 平面曲線の法線の集まりによって得られる包絡線はもとの曲線の縮閉線であることが知られています.縮閉線は平行曲線の特異点の軌跡でもあります.ともあれ,ここではアステロイドと楕円とは縮閉線と伸開線という関係にあることがわかりました.平面鏡による焦線として楕円の縮閉線であるアステロイド:x^(2/3)+y^(2/3)=a^(2/3)や双曲線の縮閉線:x^(2/3)−y^(2/3)=a^(2/3)が現れることが知られています.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 ある曲線に対して,その曲線上の各点より法線方向へ一定の距離にある曲線を「平行曲線」といいます.平行曲線とは鉄道の線路のようなものと考えてもらって差し支えないのですが,ある曲線上を円が転がるとき円の中心の描く軌跡であり,また,初期曲線を波面と考えたときの波面(フロント)の時間発展でもあります.平行曲線は光を波とみなした場合の波頭と考えられるというわけです.

 すなわち,平行曲線の考え方は,幾何光学におけるホイヘンスの原理にすでに認めることができます.ホイヘンスの原理とは,光を波とみなすとき,波面の各点から波が新たに発生すると思って半径一定の球面を描くと,その球面の包絡面が次の波面を決めるという光の進行原理のことです.

 直線の場合,「平行曲線」は平行線であり,円の場合は同心円になります.直線と円は曲率が一定の平面曲線で,曲率一定の平面曲線は直線と円に限られます.

 楕円の場合は4つのカスプをもつ曲線が浮かび上がってきましたが,これは単純閉曲線の4頂点定理と関係しています.通常のなめらかな曲線上では曲率円は曲線の2次近似となるのですが,頂点とは曲率円が3階微分以上に過剰に近似されてしまう特別な点のことで,単純閉曲線上には頂点が少なくとも4個存在するというのが4頂点定理です.曲線の曲がり具合を記述する微分幾何学の本では,卵円線の場合の証明がよく紹介されています.曲線の頂点は対応する縮閉線上に特異点を作るのです.

 直線と円の平行曲線は平面をもれなく覆いつくし,しかも重複なくただ一回だけ覆うという点に注目してみましょう.しかし,特異点が現れると,平面をただ一回だけ覆いつくすことはできません.ある曲線の平行曲線が平面をただ一回だけ覆いつくすには,曲率一定の直線と円のみがこの性質を満たしているというわけです.

 微分幾何学の基礎的知識によって,縮閉線の特異点が楕円と円の曲がり具合の違いを記述すること,平行曲線の特異点はその曲線の縮閉線上に現れること,すなわち,楕円の平行曲線の特異点は縮閉線であるアステロイド上に現れること,与えられた曲線の法線の包絡線は特異点の集合としてとらえることができることなどが理解されます.

===================================

【4】過剰虹と焦線

 主虹では外側から内側に赤・橙・黄・緑・青・藍・紫の順に見え,その外側に,色の配列が主虹と逆順の副虹がうすく見える.虹の色の分布はわかったが,光の強度分布は色の分布と微妙にずれている.この節では,光の強度分布について取り上げることにする.

 主虹と副虹の間が,アレクサンダー暗帯である.ここに反射してくる光はまったくない.また,空気が澄んだ状態では,主虹の内側に二,三本,光の筋が見えることがある.副虹の外側にも光の筋が見える可能性もある.主虹の内側と副虹の外側にぼんやりと白くと光って見えるのが,過剰虹である.

 ニュートンの理論(光の粒子説)とデカルトの理論(幾何光学的理論)を組み合わせると,虹が七色に見えること,主虹と副虹で色が逆順になることが説明されるのだが,過剰虹を説明することはできない.また,虹の色の分布はわかるにしても,光の強度分布は色の分布と微妙にずれている.

 さらに,幾何光学では虹の角度と水滴の半径は無関係に決まるはずであるのに,実際に観測すると,虹の大きさは異なっていて,理論と観測結果のずれが出てきた.

 イギリスの天文学者・物理学者のエアリーは,過剰虹や雨粒の大きさと虹の関係などについて研究した.この説明には困難をきわめたのだが,このことは光を波動と考えて,水滴の大きさも考慮に入れた光の回折理論によらなければならなかった.

 虹では光が空中から水中へ屈折して入り,中で反射して,屈折して空中に出ていく.光の経路にはスネルの法則が関係しているのだが,円(球)の性質も反映している.雨粒を理想化して,球であると考える.その際,水球に入った平行光線の束が,どのように出ていくかを調べると,入射光線と雨滴の中心との距離は様々な値をとるのであるが,出ていくときはある角度に光線が密集して,明るくなることがわかる.

 この光の優先道路は入射角から測って42°(虹角)の方向に集約される.数学的には包絡線というのだが,光学分野では焦線(caustic)あるいは火線という名で知られている.焦点では光が1点に集まるが,焦線とは点ではなくて線をなす場合をいうのである.

 エアリ−は,焦線の考え方に従って,過剰虹を説明しようとした.水滴の中の光の経路は1本線で書き表されることが多いのであるが,それは焦線であるから,極大値をとる方向ということであって,焦線について,正確に説明するためには微積分が必要になってくる.

 エアリーは,ホイヘンスの原理「ある瞬間の波面のすべての点から2次的な球面波がでていて,この2次波を重ね合わせると次の瞬間の波面となり,これが次々と伝播する」をいう原理に基づいて,焦線の近傍で光の強度を計算した.その結果だけを述べると,虹の光の振幅は,エアリー関数

  Ai(x)=∫(0,∞)cos{π/2(t^3−xt)}dt

で記述される.光の強度はこの積分関数を2乗したものになる.

 ここで,xは焦線からの距離と焦線の曲率に依存する定数である.本質的には焦線からの距離を表し,x=0のときがちょうど焦線のところで,デカルトの幾何光学に対応する.エアリー関数はx>0では指数関数的に減少し,x<0では正弦関数のように振動する関数である.

 エアリー積分を使えば,光が最も強くなるのはデカルトの理論よりも少し内側にくることがわかる.また,三角関数のように繰り返し極大値をとるので,それが過剰虹を与えるというわけである.

 一方,アレクサンダー暗帯でも,光の強度が完全に0というわけではなく,わずかながら光が漏れてくることもわかる.また,水滴が小さくなると焦線の曲率は大きくなって,虹のできる角度もより大きくなる理由も説明される.

 1836年,エアリーはこのようにしてアレクサンダー暗帯の存在と過剰虹発生とを説明した.過剰虹がなぜ見えるかという問題に答えるには,幾何光学だけでは定まらず,本質的には微積分を必要としたのである.

===================================

[補]伸開線と縮閉線

 円の伸開線,すなわち円に巻きつけた糸の一端の軌跡は

  x=a(cosθ+θsinθ),y=a(sinθ−θcosθ)

と表され,歯車の歯形として工学に応用されています.また,放物線:y=x^2の縮閉線はy=1/2+3(x/4)^(2/3)です.逆に,半立方放物線:y^2=ax^3の伸開線は放物線になります.

 定直線の上を転がる円の周に固定した点の軌跡であるサイクロイド:

  x=r(θ−sinθ),y=r(1−cosθ)

の縮閉線は

  x=a(θ+sinθ),y=−a(1−cosθ)

です.ここで,θ=π+tとおけば

  x=a(t−sint)+aπ,y=a(1−cost)−2a

ですから,もとのサイクロイドと合同なサイクロイドになることが示されます.サイクロイドの伸開線はそれと合同なサイクロイドですが,対数らせんの伸開線も再びそれと合同な対数らせんになります.

 カテナリー(懸垂線)の伸開線はトラクトリックス(追跡線)と呼ばれています.

  x=a(logtan(θ/2)+cosθ),y=asinθ

追跡線上の点と,その点での接線がx軸と交わる点との距離aは常に一定です.この性質が追跡線というこの曲線の名前の由来で,ある長さのひもの先に石を結びつけて引っ張りながらx軸上を歩くと,石の通る軌跡が追跡線になります.追跡線をx軸(漸近線)のまわりに回転すると,曲率が負で一定の曲面(擬球面)ができます.定数aをその擬半径といいます.

 驚いたことに,この曲面上の幾何学はユークリッド幾何学の平行線の公理を「直線外の1点を通り,その直線に平行な直線は無数に存在する」によって取り替えて導かれる双曲的非ユークリッド幾何学と同じになります.双曲的非ユークリッド幾何学はボヤイとロバチェフスキーがそれぞれ独立に,しかもも同じ時期に発見したものです.

===================================

[補]定幅図形(マンホールのふたはなぜ丸いか?)

 マンホールのふたはなぜ丸いか?というクイズがあります.答えは円は幅が一定なのでふたが丸ければ誤ってマンホールの中にふたが落ちることはないからというものです.それでは円以外にふたが落ちない図形はあるでしょうか?

 ピラミッドの石を積み上げる工事など,重い物を移動させるとき,下にコロ(丸太)を並べて転がすことがあります.この場合,切り口が円であることが重要ではなく,平行線で挟んだときの幅が一定であることが本質的です.

 いかなる方向に関しても等しい幅をもっている図形を「定幅図形」と呼びますが,平面における定幅図形は円だけではなく,そのような形状は(意外にも)無数にあります.

(例1)ルーローの三角形

 ルーローの三角形とは,一辺の長さaの正三角形(2次元単体)の各頂点を中心にして半径aの円弧を描くと作られる,3つの円弧からなる等辺円弧三角形です.

(例2)ルーローの三角形の平行曲線

 また,各角内に半径a+r,各対角内に半径rの円を描いても定幅曲線が得られます.これはルーローの3角形上に中心をもつ定半径円群の包絡線であり,いわば,ルーローの三角形の「平行曲線」です.

(例3)ルーローの多角形およびその平行曲線

 正三角形の代わりに正(2q+1)角形についても同様です.

(例4)任意の三角形から作られる定幅曲線

 例1〜例3は正奇数角形からの円弧構成によるものでしたが,実は,任意の三角形から定幅曲線を作ることができます.これは,定幅曲線は3角形よりもたくさんあること(すなわち無数にあること)を意味しています.

 定幅曲線の共通の性質として,

  「幅dの定幅曲線の周長Lはπdである」

があげられます(バービエの定理:1860年).円ではd=2r,L=2πr=2d.ルーローの三角形では元の三角形の1辺の長さをlとするとd=l,各円弧の長さはπl/3ですから,L=πdを満たします.これにより幅の等しい定幅曲線は周長も等しいことがわかります.

 また,等周不等式により,定幅図形の中で最大の面積をもつものは円であるが,囲む面積が最小のものはなんであろうか? という問題も派生します.その答えはルーローの三角形であることが証明されています(ルベーグ:1914年).ですから同じ幅であれば円よりもルーローの三角形のほうが資源が少なくて済むわけです.

 一方,ルーローの単体とは正四面体(3次元単体)の各頂点を中心にして辺長を半径として球面を描くと作られる定幅曲面です.ルーローの三角形を3次元に拡張した図形であり,マイスナーの凸体とも呼ばれます.体積が最小となる定幅図形と信じられていますが,証明されてはいません.一般に,3次元以上のd次元のとき,定幅で体積が最大のものはd次元球ですが,体積最小のものは解明されていないのです.

===================================

[補]四角い穴をあけるドリル・三角の穴をあけるドリル

 ところで,定幅曲線はいかなる方向に関しても等しい幅をもっているわけですから,正方形に内接しながら回転することができる図形ということになります.これを応用すれば正方形の穴をあけるドリルを作ることができます.(もちろん,中心が固定されていてはダメである.)

 一方,正3角形に内接しながら回転することできる凸閉曲線が,円以外にも存在します.定幅曲線と同様に,このような図形を応用すれば正3角形の穴をあけるドリルを作ることが可能になります.

 このような図形の一例が,正三角形の中線を一辺とする正三角形の頂点を中心として,中線の長さを半径とする2個の円弧からなる曲線(藤原・掛谷の2角形)ですが,この性質をもつ曲線の中で囲む面積が最小のものは,藤原・掛谷の2角形であることが証明されています.

 藤原は「微分積分学」など有名な解析学の本を著した数学者藤原松三郎,掛谷は「長さが1である線分を1回転させるのに必要な最小面積の図形は何か」など数々の魅力的な問題(掛谷の問題)を提出したことで知られる数学者掛谷宗一のことです.

===================================