■書ききれなかった数の話(その18)

【1】ルジャンドルの3平方和定理

  「正整数nが3つの平方数の和として表せる←→4^m(8k+7)の形をした数ではない.」

 n≠4^m(8k+7)はnが高々3個の平方数で表されるための必要十分条件です.ガウスの定理ともルジャンドルの定理とも呼ばれますが,ルジャンドルは2次形式ax^2+by^2+cz^2の研究を通して,より一般的な3元2次形式論としてこの結果を得ています.

===================================

【2】ルジャンドルの4平方和定理

 ラグランジュの4平方和定理では0も含めて考えていますが,「正」という条件を付けてみることにすると,

 「4つの正の平方数の和として表されない正の整数をすべてあげると

1,3,5,9,11,17,29,41,2×4^m,6×4^m,14×4^m」

が得られます(ルジャンドルの4平方和定理).

===================================

【3】4平方和定理の拡張

 何種類かの4変数2次形式,たとえば,

  x^2+y^2+z^2+mw^2   (m=1,2,3,4,5,6,7)

はすべての正の整数を表現することができます.

===================================

【4】2元2次形式による整数の表現と15の定理

 1996年,コンウェイとシュニーバーガーは正定値2元2次形式

  f(x,y)=ax^2+bxy+cy^2=n

が1から15までのすべての整数を表せば,それがすべての正の整数を表すことを示した(15の定理).

 もっと限定していえば

  1,2,3,5,6,7,10,14,15

の9つの数を表現するならば,すべての正の整数を表現するという定理である.

 この定理はルジャンドルの4平方和定理「何種類かの4変数2次形式,たとえば,

  x^2+y^2+z^2+mw^2   (m=1,2,3,4,5,6,7)

はすべての正の整数を表現することができる」も内包していて,

  1=1^2,2=1^2+1^2,3=1^2+1^2+1^2,5=2^2+1^2

  6=2^2+1^2+1^2,7=2^2+1^2+1^2+1^2,10=3^2+1^2

  14=3^2+2^2+1^2,15=3^2+2^2+1^2+1^2

===================================