■n次元の立方体と直角三角錐(その324)

 k面数公式を

  n次元正軸体:gk=(n,k+1)2^(k+1)

  n次元正単体:hk=(n+1,k+1)

とおく.k=[0,n−1]

  縮退情報    :  B=(b0,・・・,bn-1)

とすると,

  fn-1^(n)=Σ(j=0~n-1)gj^(n)bj

というものである.ここで,各bjは0か1の値をとるから,ゼータ関数ににおける「指標」のようなものと考えることができる.

  f=Σχg

とした方がその雰囲気が味わえるかもしれない.

 別のアイディアとして,2項係数の整除性を使って,fn-1公式を調べてみたい.

===================================

[1]n=pのとき,nCmはpの倍数である

 両端nC0=nCn=1ですから,両端以外のnCm(1≦m≦n−1)について考えます.n=pのとき

  pCm=p!/m!(p−m)!

1≦m≦p−1,1≦p−m≦p−1より,分母は素因数pを含んでいない.よって,pCmはpの倍数である.

[2]n=2^kのとき,nCmは偶数である

  (a+b)^2=a^2+{係数が偶数の項}+b^2

  {(a+b)^2}^2=a^4+{係数が偶数の項}+b^4

  {(a+b)^4}^2=a^8+{係数が偶数の項}+b^8,・・・

数学的帰納法より,nCmは偶数である

[3]n=2^k−1のとき,nCmは奇数である

 [2]より,n+1Cmは偶数である.

  n+1Cm=nCm-1+nCm

  1+nC1=偶数→nC1は奇数

  nC1+nC2=偶数→nC2は奇数,・・・

よって,nCmは奇数である.さらに,nCmがすべては奇数になるのは,n=2^k−1のときに限る.

 実際,他の行には偶数があるのですが,

[4]n=2^kのとき,両端以外のnCm,2^k−1個はすべて偶数である

[5]n=2^k+1のとき,真ん中のnCm,2^k−2個はすべて偶数である

[6]n=2^k+2のとき,真ん中のnCm,2^k−3個はすべて偶数である

・・・・・・・・・・・・・・・

[7]n=2^k+1−2=2^k+2^k−2のとき,真ん中のnCm,2^k−(2^k−1)=1個はすべて偶数である

[8]nCmがすべては奇数になるのは,n=2^k−1のときだけ

ということになります.

 ついでにいうと,nCm(m=0〜n)がすべては奇数になるのは,n=2^k−1のときに限る.さらに,k>1に対してnCm(m=1〜n−1)がkで割り切れるための必要十分条件は,kが素数であって,n=k^mの形に書けるときに限る.

===================================

[4]n=2^kのとき,両端以外のnCm,n−1個はすべて偶数である

[5]n=2^k+1のとき,真ん中のnCm,n−3個はすべて偶数である

[6]n=2^k+2のとき,真ん中のnCm,n−5個はすべて偶数である

・・・・・・・・・・・・・・・

[7]n=2^k+1−2=2^k+2^k−2のとき,真ん中のnCm,1個はすべて偶数である

 これを

  n次元正単体:hk=(n+1,k+1)  (k=0〜n−1)

に対しては適用するにしても,情報量が少なすぎて使えそうにない.

===================================