■多面体巡礼(その2)

 (その1)を補足しておきたい.

[1]正三角形の縮小三角形は正三角形であるから簡単に解けたが,一般の三角形の場合の定理を使ってみたい.

 一般に与えられた三角形の各辺をλ:1,μ:1,ν:1に分ける位置に点をとって対頂点と結んで作った三角形の面積は,もとの三角形の面積の

  M=(λμν−1)^2/(λμ+λ+1)(μν+μ+1)(νλ+ν+1)

倍に等しくなる.

 λ=μ=νの場合,

  M=(λ^3−1)^2/(λ^2+λ+1)^3=(λ−1)^3/(λ^3−1)

倍に等しくなる.λ=μ=ν=2(k=1/3)のとき1/7.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[2]与えられた三角形の各辺をλ:1,μ:1,ν:1に分ける位置に点をとって点同士を結んで作った三角形の面積は,もとの三角形の面積の

  M=(λμν+1)/(λ+1)(μ+1)(ν+1)

倍に等しくなる.

(証)1/(λ+1)・μ/(μ+1)+1/(μ+1)・ν/(ν+1)+1/(ν+1)・λ/(λ+1)=1−(λμν+1)/(λ+1)(μ+1)(ν+1)

 λ=μ=νの場合,

  M=(λ^3+1)/(λ+1)^3

倍に等しくなる.λ=μ=ν=2(k=1/3)のとき1/3.

===================================