■ソフトマテリアルの構築学(その3)

 3次元の14面体による空間分割,n次元の2(2^n−1)胞体による空間分割を補足しておきたい.

===================================

【1】石鹸の泡細胞

 オイラーの定理が物理的作用と結びつくと,興味のある幾何学的効果が出現してきます.たとえば,2次元的にランダムに配列した石鹸の泡はいろいろなサイズの泡細胞からなっていますが,表面張力の要請から境界長を極小化しようとしますから,接合角度は120度となります(プラトー問題・最小シュタイナー木問題).このことから,石鹸の泡は各頂点の次数がすべて3である平面図形と考えることができます.

 また,互いに120°の角度で交わる石鹸膜の交線は

  arccos(−1/3)=109.471°

で接触します.正四面体の頂点から中心に向かう3枚の膜は互いに120°の角度をなし,中心に集まる4本の線は109.471°(マラルディの角)をなすのです.

 すなわち,4本の稜線が各頂点でマラルディの角をなして交わり,その一方で,3枚の面が120°の二面角をなしながら各稜線で集まる.このように,120°と109.471°は石鹸膜が接触するときの基本的な角度ですが,コクセターは1つの泡に接する泡の数を

 (23+√313)/3=13.56

と計算し,そのアイデアを日記に記しています.

 これは2次方程式

  3x^2−46x+72=0

の解となっていることが見てとれますが,どのようにして導出されたものなのでしょうか?

(A)4次元正多胞体はシュレーフリ記号{p,q,r}・・・各頂点にp角形がq面集まる多面体が各辺にr個集まる・・・で表記されるとします.

 [参]コクセターの「最密充填と泡」に関する論文

  Coxeter: Close packing and froth, Illinois Journal of Mathematics 2, 746-758 (1958)

によると,p,q,rに関する不等式

  1/p+1/q>1/2   (p,q≧3)

  1/q+1/r>1/2   (q,r≧3)

に有限群であるという条件が付加されると,さらに2次不等式

  p−4/p+2q+r−4/r<12

  p−4/p<12−2q−r+4/r

  p^2−(12−2q−r+4/r)p−4<0

が得られます.

 泡細胞の合胞体の場合,1個の頂点に3個の辺が集まり,1本の辺の周りに3個の泡細胞が合するというのが空間分割の局所条件ですから,q=r=3とおくと

  p^2−(13/3)p−4<0

  p<(13+√313)/6=5.1153

これを

  f=12/(6−p)

  v=4p/(6−p)

  e=6p/(6−p)

に代入すると

  f=(23+√313)/3=13.564

  v=2(17+√313)/3=23.128

  e=17+√313=34.692

になるというわけです.

===================================

【2】石鹸の泡細胞(その2)

 多面体の面がすべてf4とf6であるならば,f4=6(切頂八面体など)である.ケルビンは石鹸の泡がみせる規則性は,14面の切頂八面体による空間充填図形であるとした.

 切頂八面体は各頂点に4つの稜線が集まり,各稜線に3つの面を集める空間充填図形になるからである.切頂八面体の二面角は120°ではなく,各頂点に集まる稜線のなす角度も109.471°ではないが,面が曲面であれば泡が要求する120°と109.471°の条件を満たすことができる.

 しかし,ケルビンの14面体は石鹸の泡の中にはほとんどみられないことが,ウィリアムスによって指摘された.なお,各頂点に4つの辺が集まる空間分割では

  <F>=12/(6−<p>)

  <F>=13.96 → <p>=5.1

===================================

【3】n次元のマラルディー角

 2次元的にランダムに配列した石鹸の泡はいろいろなサイズの泡細胞からなっていますが,表面張力の要請から境界長を極小化しようとしますから,接合角度は120度となります(プラトー問題・最小シュタイナー木問題).

  cosθ=−1/2,θ=120°

このことから,石鹸の泡は各頂点の次数がすべて3である平面図形と考えることができます.

 また,互いに120°の角度で交わる石鹸膜の交線は

  cosθ=−1/3,θ=109.471°

で接触します.正四面体の頂点から中心に向かう3枚の膜は互いに120°の角度をなし,中心に集まる4本の線は109.471°(マラルディの角)をなすのです.

 このように120°と109.471°は石鹸膜が接触するときの基本的な角度ですが,正三角形ではcosθ=−1/2,正四面体ではcosθ=−1/3の右辺に現れる分母2,3がそれぞれ平面の次元の2,空間の次元の3と一致することは偶然ではありません.n次元のマラルディの角は

  cosθ=−1/n

で与えられるのです.

 また,n=3の場合,正四面体の頂点から中心に向かう3枚の膜は互いに120°の角度をなした.それでは正n+1胞体の頂点から中心に向かうn枚の膜(胞)が互いになす角度は?という問題を考えてみると,

  cosθ=−1/(n−1)

すなわち,n=3のときは120°,n=4のときは109.471°となることがわかる.

===================================