■無理数・代数的数・超越数(その14)

 無限個の近似分数列{an/bn}で非常によく近似できる実数αについて

  |α−an/bn|<1/bn^2

が成立するならば,αは無理数です(ディリクレの定理:右辺はこの定数倍でもよい).

 αが有理数ならば,

  |α−a/b|<1/b^2

を満たすものは有限個しか存在しないので,無限個の有理数で

  |α−an/bn|<1/bn^2

を満たすものが存在するというのは無理数特有の性質といえます.t

 それでは

  |α−an/bn|<1/bn^k

が無限に多くの解をもつことができるような最大の実数kはいくつになるのだろうか? kを求める問題は1種の最良近似問題であるが,今回のコラムでは「ロスの定理」を紹介することにする.

===================================

【1】ディリクレの定理の証明

 αが有理数で,α=p/qと表されたとする.{bn}は次々に大きくなる整数列であるから,q<bnである番号をとると

  |α−an/bn|=|p/q−an/bn|=|pbn−qan|/qbn

 しかし,an/bnはαとは一致しないので分子は1以上.したがって

  |α−an/bn|≧1/qbn

であるが,これが<1/bn^2なのでq>bnとなり矛盾.すなわち,αは有理数ではあり得ないことになる.

 このように,「ディリクレの定理」の証明は,引き出し論法あるいは鳩の巣原理と呼ばれるものから容易に導かれる.この原理はn個の巣箱にn+1羽の鳩が入っているならば,ある巣箱には少なくとも2羽の鳩が入っていなければならないというものである.

===================================

【2】ロスの定理

 2次の無理数では,ある数cが存在して

  |α−p/q|>c/q^2

がすべての有理数p/qに対して成り立つことが導かれたが,リューヴィルはこのような定理がより一般の任意の代数的無理数に対しても成立することを証明した.

 すなわち,代数的数αの次数をn(≧2)とすると,

  |α−p/q|>c/q^n

がすべての有理数p/qに対して成り立つ(リューヴィルの定理,1844年).

 それでは

  |α−p/q|>c/q^k

がすべての有理数p/qに対して成り立つkはいくつになるのだろうか? この指数kを改良するために多くの研究がなされた.「ロスの定理」は最良のものである.

  k≧n   (リューヴィル,1844)

  k>n/2+1   (トゥエ,1909)

  k>2√n   (ジーゲル,1921)

  k>√(2n)   (ダイソン,ゲルファント,1947)

  k>2   (ロス,1955)

 この予想は1955年,イギリスの数学者ロスによって証明された.

「無理数αが無限に多くの既約分数解{an/bn}をもてば,k≦2が成立する.」

 ディリクレの定理からk≧2であるから,合わせるとk=2という結論を得ることができる.つまり,ロスの定理は次数n≧2の代数的数αは最良無理測度2をもつというもので,ディリクレに始まった無理数を有理数で近似する問題に関する決定的な結果(k=2)であって,ディオファントス近似に対する一応の終止符が打たれたことになる.この業績によりロスにはフィールズ賞が与えられることになった(1958年)

 トゥエ・ジーゲル・ロスの定理はkのある値に対して,cの値が存在することを証明したが,cの値を具体的に定めることはできない.そうではあるが,特別な代数的数に対しては効果的な結果が得られている.たとえば,ベイカーは超幾何関数の性質を用いて,すべての有理数p/qに対して

  |3√2−p/q|>10^-6/q^2.955

が成り立つことを証明した(1964年).n≧3の一般の代数的無理数に対するcの値を具体的に与えられる希望が見えてきたのである.

 超越数の理論から,任意のεに対してc>0が存在して,すべての整数p,q1,・・・qnに対して

  |q1e+・・・+qne^n−p|>cq^(-n-ε)   q=max|qi|

が成り立つが,トゥエ・ジーゲル・ロスの定理を一般化したシュミット(1971年)の研究は,e,・・・,e^nを有理数上1次独立であるような代数的数θ,・・・,θ^nに置き換えても同じことが成り立つことを示している.

  |q1θ+・・・+qnθ^n−p|>cq^(-n-ε)   q=max|qi|

シュミットの拡張は部分空間定理と呼ばれるものである.

===================================

【3】補足

 実数αが整数係数の2次方程式の根になっている(2次の無理数)ならば,

  |α−p/q|<1/q^3

を満たす有理数は有限個しかない.

(証)αを根にもつ整数係数の2次方程式を

  f(x)=ax^2+bx+c

とすると,

  f(p/q)−f(α)=(p/q−α)(ap/q−2aα+b)

 両辺のq^2をかけて,f(α)=0と|α−p/q|<1/q^3を使えば,

  |ap^2+bpq+cq^2|<(|a|+|2aα+b|)/q

左辺は整数,右辺はqが大きくなると0に収束するので,この不等式を満たすp/qの組は有限個しかない.

 それどころか,実数αが整数係数の代数方程式a0+a1x+a2x^2+・・・+anx^n=0の根になっている(代数的数)ならば,

  |α−p/q|<1/q^(2+ε)

を満たす有理数は有限個しかない(ロスの定理).

===================================