■初等幾何の楽しみ(その49)

 阪本ひろむ氏から,Mathematicaのグレブナー基底の消去機能を使ってn=8の場合のグレブナー基底

  d^10+2d^9r−8d^7r^3−8d^6r^4−5d^8R^2−8d^7rR^2−8d^6r^2R^2+8d^5r^3R^2+24d^4r^4R^2+32d^3r^5R^2+10d^6R^4+12d^5rR^4+24d^4r^2R^4+8d^3r^3R^4−8d^2r^4R^4−10d^4R^6−8d^3rR^6−24d^2r^2R^6−8dr^3R^6−8r^4R^6+5d^2R^8+2drR^8+8r^2R^8−R^10=0

が得られたという連絡があった.

 d=0とおくと

  −8r^4R^6+8r^2R^8−R^10=0

となるが,

  r/R=cos(π/8)=(4−2√2)^1/2

はこれを満たす.それにしてもこの問題はずいぶんロングランとなった.

===================================

[1]双心三角形

  R^2−2Rr=d^2   (オイラーの定理)

[2]双心四角形

  2r^2(R^2+d^2)=(R^2−d^2)^2    (フースの定理)

[3]双心五角形

  d^6−2d^4rR+8d^2r^3R−3d^4R^2−4d^2r^2R^2+4d^2rR^3+3d^2R^4+4r^2R^4−2rR^5−R^6=0

[4]双心六角形

  3d^8−4d^6r^2−12d^6R^2+4d^4r^2R^2−16d^2r^4R^2+18d^4R^4+4d^2r^2R^4−12d^2R^6−4r^2R^6+3R^8=0

[5]双心七角形

  d^12+4d^10rR−24d^8r^3R+32d^6r^5R−6d^10R^2−4d^8r^2R^2−16d^6r^4R^2−20d^8rR^3+64d^6r^3R^3+15d^8R^4+16d^6r^2R^4+32d^4r^4R^4+64d^2r^6R^4+40d^6rR^5−48d^4r^3R^5−32d^2r^5R^5−20d^6R^6−24d^4r^2R^6−16d^2r^4R^6−40d^4rR^7+15d^4R^8+16d^2r^2R^8+20d^2rR^9+8r^3R^9−6d^2R^10−4r^2R^10−4rR^11+R^12=0

[6]双心八角形

  d^10+2d^9r−8d^7r^3−8d^6r^4−5d^8R^2−8d^7rR^2−8d^6r^2R^2+8d^5r^3R^2+24d^4r^4R^2+32d^3r^5R^2+10d^6R^4+12d^5rR^4+24d^4r^2R^4+8d^3r^3R^4−8d^2r^4R^4−10d^4R^6−8d^3rR^6−24d^2r^2R^6−8dr^3R^6−8r^4R^6+5d^2R^8+2drR^8+8r^2R^8−R^10=0

===================================