■アルベロス(靴屋のナイフ)

 私がアルベロスを知ったのはマーチン・ガードナーの本であった.そこにはアルベロスのことを驚くほど多くの幾何学的性質をもつ集合図形として紹介されていた.

 いまでも鮮明に記憶しているのだが,つい最近,書店で

  奥村博,渡辺雅之「アルベロス,3つの半円が作る幾何宇宙」岩波書店

を見つけ即刻購読.

 和算においてもアルベロスに関する問題が扱われているのだが,当該書籍はアルベロスのみを題材としてそれらを集大成したおそらく世界初のユニークな出版物であろう.

===================================

【1】シュタイナーの定理

 小円を大円の内部におき,この2つの円の中間に次々に接する円列を作る.たいていの場合,最後の円は重なってしまい,この円列は互いに接する円環をなさない.しかしときとして完全な円環をなす場合がある.このとき,最初の円をどこに選ぼうとも完全な円環をなす.

 接する円の族に関する定理では何百という美しい定理があるが,シュタイナー円鎖では小円を大円の内部におき,この2つの円の中間に次々に接する円列を作る.たいていの場合,最後の円は重なってしまい,この円列は互いに接する円環をなさない.しかしときとして完全な円環をなす場合がある.これがシュタイナー円鎖である.

 最も簡単なものとしては,たとえば,半径が3と1の同心円に対しては6個の単位円よりなるシュタイナー円鎖が存在し,円の中心の軌跡は半径2の円となる(円の最密充填).シュタイナー円鎖をなす円の中心の軌跡は楕円となる.

 アルキメデスのアルベロス(靴屋のナイフ)円列はシュタイナーの円鎖の特別な場合になっていて,円の中心はすべて基線上に長径をもつ楕円の上にのっている.この円列の円の中心から基線までの距離は半径の2倍,4倍,8倍,・・・となる(パップス).

 ソディー(アイソトープの発見でノーベル賞を受賞した英国の化学者)の6球連鎖はシュタイナー円鎖の3次元版であるが,シュタイナー円鎖の場合とは異なって,球連鎖は常に繋がり必ず6個の球からなる.そして6個の球の中心,球同士の接点はすべて同一平面上にあるのである.

 反転によって,接する2円は接する2円か,円とその接線か,平行な2直線のいずれかにに移る.また,平面上の交わらない2つの円を同心円に移す写像が存在する.シュタイナーやソディーの定理はこれらの事実に基づいて証明されるのである.

===================================

【2】アポロニウスのガスケット

 アルキメデスのアルベロス円列は2つずつ接する3つの円に対し,3つの円に接する円を次々に描き加えていくものである.フォードの円列は最初の3つの円のうち1つが直線(半径∞の円)に変わったものである.

 フォードの円列と直線との接点は常に有理数であり,区間[0,1]のすべての有理数はフォードの円列の接点として得られる.たとえば,x^2+(y−1/2)^2=(1/2)^2と(x−1)^2+(y−1/2)^2=(1/2)^2によって表されるような2円から始めると,ファレイ数列

[0/1,1/1]

→[0/1,1/2,1/1](2位のファレイ数列)

→[0/1,1/3,1/2,2/3,1/1](3位のファレイ数列)

→[0/1,1/4,1/3,2/5,1/2,3/5,2/3,3/4,1/1](5位のファレイ数列)

→[0/1,1/5,1/4,2/7,1/3,3/8,2/5,3/7,1/2,4/7,3/5,5/8,2/3,5/7,3/4,4/5,1/1](8位のファレイ数列)

が得られる.(n位のファレイ数列とは分子と分母がnを超えない既約な正の有理数全体を大きさの順に並べたものである.)

 ファレイ数列では相隣り合う2項[m1/n1,m2/n2]の分母と分子からなる行列式の値m1n2−m2n1は±1である.また,フォードの円列では(m1/n1,1/2n1^2)を中心とする半径1/2n1^2の円と(m2/n2,1/2n2^2)を中心とする半径1/2n2^2の円が接する.

 一般に3つの円に接する4つ目の円を描く問題が「アポロニウスの問題」であり,この操作を無限に繰り返してできる図形をアポロニウスのガスケットという.フォードの円列,アルキメデスのアルベロス円列はアポロニウスのガスケットの特別な場合になっている.

===================================